123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- from pipeline.backend.pipeline import PipeLine
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- data_base = config.data_base_dir
- # partition for data storage
- partition = 4
- # table name and namespace, used in FATE job configuration
- dense_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- tag_data = {"name": "tag_value_1", "namespace": f"experiment{namespace}"}
- pipeline_upload = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest)
- # add upload data info
- # path to csv file(s) to be uploaded
- pipeline_upload.add_upload_data(file=os.path.join(data_base, "examples/data/breast_hetero_guest.csv"),
- table_name=dense_data["name"], # table name
- namespace=dense_data["namespace"], # namespace
- head=1, partition=partition, # data info
- id_delimiter=",",
- extend_sid=True)
- pipeline_upload.add_upload_data(file=os.path.join(data_base, "examples/data/tag_value_1000_140.csv"),
- table_name=tag_data["name"],
- namespace=tag_data["namespace"],
- head=0, partition=partition,
- id_delimiter=",",
- extend_sid=True)
- # upload both data
- pipeline_upload.upload(drop=1)
- if __name__ == "__main__":
- main()
|