123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import numpy as np
- from federatedml.model_base import ModelBase
- from federatedml.feature.imputer import Imputer
- from federatedml.protobuf.generated.feature_imputation_meta_pb2 import FeatureImputationMeta, FeatureImputerMeta
- from federatedml.protobuf.generated.feature_imputation_param_pb2 import FeatureImputationParam, FeatureImputerParam
- from federatedml.statistic.data_overview import get_header
- from federatedml.util import LOGGER
- from federatedml.util.io_check import assert_io_num_rows_equal
- class FeatureImputation(ModelBase):
- def __init__(self):
- super(FeatureImputation, self).__init__()
- self.summary_obj = None
- self.missing_impute_rate = None
- self.skip_cols = []
- self.cols_replace_method = None
- self.header = None
- from federatedml.param.feature_imputation_param import FeatureImputationParam
- self.model_param = FeatureImputationParam()
- self.model_param_name = 'FeatureImputationParam'
- self.model_meta_name = 'FeatureImputationMeta'
- def _init_model(self, model_param):
- self.missing_fill_method = model_param.missing_fill_method
- self.col_missing_fill_method = model_param.col_missing_fill_method
- self.default_value = model_param.default_value
- self.missing_impute = model_param.missing_impute
- def get_summary(self):
- missing_summary = dict()
- missing_summary["missing_value"] = list(self.missing_impute)
- missing_summary["missing_impute_value"] = dict(zip(self.header, self.default_value))
- missing_summary["missing_impute_rate"] = dict(zip(self.header, self.missing_impute_rate))
- missing_summary["skip_cols"] = self.skip_cols
- return missing_summary
- def load_model(self, model_dict):
- param_obj = list(model_dict.get('model').values())[0].get(self.model_param_name)
- meta_obj = list(model_dict.get('model').values())[0].get(self.model_meta_name)
- self.header = param_obj.header
- self.missing_fill, self.missing_fill_method, \
- self.missing_impute, self.default_value, self.skip_cols = load_feature_imputer_model(self.header,
- "Imputer",
- meta_obj.imputer_meta,
- param_obj.imputer_param)
- def save_model(self):
- meta_obj, param_obj = save_feature_imputer_model(missing_fill=True,
- missing_replace_method=self.missing_fill_method,
- cols_replace_method=self.cols_replace_method,
- missing_impute=self.missing_impute,
- missing_fill_value=self.default_value,
- missing_replace_rate=self.missing_impute_rate,
- header=self.header,
- skip_cols=self.skip_cols)
- return meta_obj, param_obj
- def export_model(self):
- missing_imputer_meta, missing_imputer_param = self.save_model()
- meta_obj = FeatureImputationMeta(need_run=self.need_run,
- imputer_meta=missing_imputer_meta)
- param_obj = FeatureImputationParam(header=self.header,
- imputer_param=missing_imputer_param)
- model_dict = {
- self.model_meta_name: meta_obj,
- self.model_param_name: param_obj
- }
- return model_dict
- @assert_io_num_rows_equal
- def fit(self, data):
- LOGGER.info(f"Enter Feature Imputation fit")
- imputer_processor = Imputer(self.missing_impute)
- self.header = get_header(data)
- if self.col_missing_fill_method:
- for k in self.col_missing_fill_method.keys():
- if k not in self.header:
- raise ValueError(f"{k} not found in data header. Please check col_missing_fill_method keys.")
- imputed_data, self.default_value = imputer_processor.fit(data,
- replace_method=self.missing_fill_method,
- replace_value=self.default_value,
- col_replace_method=self.col_missing_fill_method)
- if self.missing_impute is None:
- self.missing_impute = imputer_processor.get_missing_value_list()
- self.missing_impute_rate = imputer_processor.get_impute_rate("fit")
- # self.header = get_header(imputed_data)
- self.cols_replace_method = imputer_processor.cols_replace_method
- self.skip_cols = imputer_processor.get_skip_cols()
- self.set_summary(self.get_summary())
- return imputed_data
- @assert_io_num_rows_equal
- def transform(self, data):
- LOGGER.info(f"Enter Feature Imputation transform")
- imputer_processor = Imputer(self.missing_impute)
- imputed_data = imputer_processor.transform(data,
- transform_value=self.default_value,
- skip_cols=self.skip_cols)
- if self.missing_impute is None:
- self.missing_impute = imputer_processor.get_missing_value_list()
- self.missing_impute_rate = imputer_processor.get_impute_rate("transform")
- return imputed_data
- def save_feature_imputer_model(missing_fill=False,
- missing_replace_method=None,
- cols_replace_method=None,
- missing_impute=None,
- missing_fill_value=None,
- missing_replace_rate=None,
- header=None,
- skip_cols=None):
- model_meta = FeatureImputerMeta()
- model_param = FeatureImputerParam()
- model_meta.is_imputer = missing_fill
- if missing_fill:
- if missing_replace_method and cols_replace_method is None:
- model_meta.strategy = missing_replace_method
- if missing_impute is not None:
- model_meta.missing_value.extend(map(str, missing_impute))
- model_meta.missing_value_type.extend([type(v).__name__ for v in missing_impute])
- if missing_fill_value is not None and header is not None:
- fill_header = [col for col in header if col not in skip_cols]
- feature_value_dict = dict(zip(fill_header, map(str, missing_fill_value)))
- model_param.missing_replace_value.update(feature_value_dict)
- missing_fill_value_type = [type(v).__name__ for v in missing_fill_value]
- feature_value_type_dict = dict(zip(fill_header, missing_fill_value_type))
- model_param.missing_replace_value_type.update(feature_value_type_dict)
- if missing_replace_rate is not None:
- missing_replace_rate_dict = dict(zip(header, missing_replace_rate))
- model_param.missing_value_ratio.update(missing_replace_rate_dict)
- if cols_replace_method is not None:
- cols_replace_method = {k: str(v) for k, v in cols_replace_method.items()}
- # model_param.cols_replace_method.update(cols_replace_method)
- else:
- filled_cols = set(header) - set(skip_cols)
- cols_replace_method = {k: str(missing_replace_method) for k in filled_cols}
- model_param.cols_replace_method.update(cols_replace_method)
- model_param.skip_cols.extend(skip_cols)
- return model_meta, model_param
- def load_value_to_type(value, value_type):
- if value is None:
- loaded_value = None
- elif value_type in ["int", "int64", "long", "float", "float64", "double"]:
- loaded_value = getattr(np, value_type)(value)
- elif value_type in ["str", "_str"]:
- loaded_value = str(value)
- elif value_type.lower() in ["none", "nonetype"]:
- loaded_value = None
- else:
- raise ValueError(f"unknown value type: {value_type}")
- return loaded_value
- def load_feature_imputer_model(header=None,
- model_name="Imputer",
- model_meta=None,
- model_param=None):
- missing_fill = model_meta.is_imputer
- missing_replace_method = model_meta.strategy
- missing_value = list(model_meta.missing_value)
- missing_value_type = list(model_meta.missing_value_type)
- missing_fill_value = model_param.missing_replace_value
- missing_fill_value_type = model_param.missing_replace_value_type
- skip_cols = list(model_param.skip_cols)
- if missing_fill:
- if not missing_replace_method:
- missing_replace_method = None
- if not missing_value:
- missing_value = None
- else:
- missing_value = [load_value_to_type(missing_value[i],
- missing_value_type[i]) for i in range(len(missing_value))]
- if missing_fill_value:
- missing_fill_value = [load_value_to_type(missing_fill_value.get(head),
- missing_fill_value_type.get(head)) for head in header]
- else:
- missing_fill_value = None
- else:
- missing_replace_method = None
- missing_value = None
- missing_fill_value = None
- return missing_fill, missing_replace_method, missing_value, missing_fill_value, skip_cols
|