12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from federatedml.framework.weights import ListWeights, TransferableWeights
- from federatedml.util import LOGGER, paillier_check, ipcl_operator
- class LinearModelWeights(ListWeights):
- def __init__(self, l, fit_intercept, raise_overflow_error=True):
- l = np.array(l)
- if l.shape != (0,) and not paillier_check.is_paillier_encrypted_number(l):
- if np.max(np.abs(l)) > 1e8:
- if raise_overflow_error:
- raise RuntimeError(
- "The model weights are overflow, please check if the input data has been normalized")
- else:
- LOGGER.warning(
- f"LinearModelWeights contains entry greater than 1e8.")
- super().__init__(l)
- self.fit_intercept = fit_intercept
- self.raise_overflow_error = raise_overflow_error
- def for_remote(self):
- return TransferableWeights(self._weights, self.__class__, self.fit_intercept)
- @property
- def coef_(self):
- if self.fit_intercept:
- if paillier_check.is_single_ipcl_encrypted_number(self._weights):
- coeffs = ipcl_operator.get_coeffs(self._weights.item(0))
- return np.array(coeffs)
- return np.array(self._weights[:-1])
- return np.array(self._weights)
- @property
- def intercept_(self):
- if self.fit_intercept:
- if paillier_check.is_single_ipcl_encrypted_number(self._weights):
- return ipcl_operator.get_intercept(self._weights.item(0))
- return 0.0 if len(self._weights) == 0 else self._weights[-1]
- return 0.0
- def binary_op(self, other: 'LinearModelWeights', func, inplace):
- if inplace:
- for k, v in enumerate(self._weights):
- self._weights[k] = func(self._weights[k], other._weights[k])
- return self
- else:
- _w = []
- for k, v in enumerate(self._weights):
- _w.append(func(self._weights[k], other._weights[k]))
- return LinearModelWeights(_w, self.fit_intercept, self.raise_overflow_error)
- def map_values(self, func, inplace):
- if paillier_check.is_single_ipcl_encrypted_number(self._weights):
- if inplace:
- self._weights = np.array(func(self.unboxed.item(0)))
- return self
- else:
- _w = func(self.unboxed.item(0))
- return LinearModelWeights(_w, self.fit_intercept)
- if inplace:
- for k, v in enumerate(self._weights):
- self._weights[k] = func(v)
- return self
- else:
- _w = []
- for v in self._weights:
- _w.append(func(v))
- return LinearModelWeights(_w, self.fit_intercept)
- def __repr__(self):
- return f"weights: {self.coef_}, intercept: {self.intercept_}"
|