1234567891011121314151617181920212223242526272829303132333435363738394041 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from federatedml.model_selection.stepwise.hetero_stepwise import HeteroStepwise
- from federatedml.util import LOGGER
- from federatedml.util import consts
- def _get_stepwise_param(model):
- model.model_param.stepwise_param.role = model.role
- model.model_param.stepwise_param.mode = model.mode
- return model.model_param.stepwise_param
- def run(model, train_data, validate_data=None):
- if not model.need_run:
- return train_data
- if model.mode == consts.HETERO:
- step_obj = HeteroStepwise()
- else:
- raise ValueError("stepwise currently only support Hetero mode.")
- stepwise_param = _get_stepwise_param(model)
- step_obj.run(stepwise_param, train_data, validate_data, model)
- pred_result = HeteroStepwise.predict(train_data, model)
- LOGGER.info("Finish running Stepwise")
- return pred_result
|