123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import numpy as np
- import torch
- from federatedml.nn.hetero.nn_component.torch_model import TorchNNModel
- from federatedml.nn.hetero.protection_enhance.coae import train_an_autoencoder_confuser, CoAE, coae_label_reformat, \
- CrossEntropy
- from federatedml.util import LOGGER
- class TopModel(object):
- def __init__(self, loss, optimizer, layer_config, coae_config, label_num):
- self.coae = None
- self.coae_config = coae_config
- self.label_num = label_num
- LOGGER.debug('label num is {}'.format(self.label_num))
- self._model: TorchNNModel = TorchNNModel(nn_define=layer_config, optimizer_define=optimizer,
- loss_fn_define=loss)
- self.label_reformat = None
- if self.coae_config:
- self._model.loss_fn = CrossEntropy()
- if self.coae_config:
- self.label_reformat = coae_label_reformat
- self.batch_size = None
- self.selector = None
- self.batch_data_cached_X = []
- self.batch_data_cached_y = []
- def set_backward_selector_strategy(self, selector):
- self.selector = selector
- def set_batch(self, batch_size):
- self.batch_size = batch_size
- def train_mode(self, mode):
- self._model.train_mode(mode)
- def train_and_get_backward_gradient(self, x, y):
- LOGGER.debug("top model start to forward propagation")
- selective_id = []
- input_gradient = []
- # transform label format
- if self.label_reformat:
- y = self.label_reformat(y, label_num=self.label_num)
- # train an auto-encoder confuser
- if self.coae_config and self.coae is None:
- LOGGER.debug('training coae encoder')
- self.coae: CoAE = train_an_autoencoder_confuser(y.shape[1], self.coae_config.epoch,
- self.coae_config.lambda1, self.coae_config.lambda2,
- self.coae_config.lr, self.coae_config.verbose)
- # make fake soft label
- if self.coae:
- # transform labels to fake labels
- y = self.coae.encode(y).detach().numpy()
- LOGGER.debug('fake labels are {}'.format(y))
- # run selector
- if self.selector:
- # when run selective bp, need to convert y to numpy format
- if isinstance(y, torch.Tensor):
- y = y.cpu().numpy()
- losses = self._model.get_forward_loss_from_input(x, y)
- loss = sum(losses) / len(losses)
- selective_strategy = self.selector.select_batch_sample(losses)
- for idx, select in enumerate(selective_strategy):
- if select:
- selective_id.append(idx)
- self.batch_data_cached_X.append(x[idx])
- self.batch_data_cached_y.append(y[idx])
- if len(self.batch_data_cached_X) >= self.batch_size:
- data = (np.array(self.batch_data_cached_X[: self.batch_size]),
- np.array(self.batch_data_cached_y[: self.batch_size]))
- input_gradient = self._model.get_input_gradients(data[0], data[1])[
- 0]
- self._model.train(data)
- self.batch_data_cached_X = self.batch_data_cached_X[self.batch_size:]
- self.batch_data_cached_y = self.batch_data_cached_y[self.batch_size:]
- else:
- input_gradient = self._model.get_input_gradients(x, y)[0]
- self._model.train((x, y))
- loss = self._model.get_loss()[0]
- return selective_id, input_gradient, loss
- def predict(self, input_data):
- output_data = self._model.predict(input_data)
- if self.coae:
- real_output = self.coae.decode(output_data).detach().numpy()
- if real_output.shape[1] == 2:
- real_output = real_output[::, 1].reshape((-1, 1))
- return real_output
- else:
- return output_data
- def export_coae(self):
- if self.coae:
- model_bytes = TorchNNModel.get_model_bytes(self.coae)
- return model_bytes
- else:
- return None
- def restore_coae(self, model_bytes):
- if model_bytes is not None and len(model_bytes) > 0:
- coae = TorchNNModel.recover_model_bytes(model_bytes)
- self.coae = coae
- def export_model(self):
- return self._model.export_model()
- def restore_model(self, model_bytes):
- self._model = self._model.restore_model(model_bytes)
- def __repr__(self):
- return 'top model contains {}'.format(self._model.__repr__())
|