123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- import time
- import unittest
- import numpy as np
- import pandas as pd
- from federatedml.util import fate_operator
- def go_fast(a): # Function is compiled and runs in machine code
- sum = 0
- for j in range(100000):
- trace = 0
- for i in range(a.shape[0]):
- trace += np.tanh(a[i, i])
- sum += trace
- print(sum)
- return sum
- class TestHomoLRGradient(unittest.TestCase):
- def setUp(self):
- # home_dir = os.path.split(os.path.realpath(__file__))[0]
- # data_dir = home_dir + '/../../../../../examples/data/breast_hetero_guest.csv'
- # data_df = pd.read_csv(data_dir)
- # self.X = np.array(data_df.iloc[:, 2:])
- # self.Y = np.array(data_df.iloc[:, 1])
- # self.Y = self.Y.reshape([-1, 1])
- self.X = np.random.random((569, 30))
- self.Y = np.random.randint(low=0, high=2, size=(569, 1))
- self.coef = np.zeros(self.X.shape[1])
- self.intercept = 0
- self.fit_intercept = True
- def test_compute_time(self):
- x = np.arange(10000).reshape(100, 100)
- start_time = time.time()
- grad = self._test_compute(self.X, self.Y, self.coef, self.intercept, self.fit_intercept)
- # go_fast(x)
- end_time = time.time()
- print("compute time: {}".format(end_time - start_time)) # without jit: 6.935, with jit: 6.684
- # add jit in dot 7.271
- # add jit in dot only: 7.616
- pass
- def _test_compute(self, X, Y, coef, intercept, fit_intercept):
- batch_size = len(X)
- if batch_size == 0:
- return None, None
- one_d_y = Y.reshape([-1, ])
- d = (0.25 * np.array(fate_operator.dot(X, coef) + intercept).transpose() + 0.5 * one_d_y * -1)
- grad_batch = X.transpose() * d
- tot_loss = np.log(1 + np.exp(np.multiply(-Y.transpose(), X.dot(coef) + intercept))).sum()
- avg_loss = tot_loss / Y.shape[0]
- # grad_batch = grad_batch.transpose()
- # if fit_intercept:
- # grad_batch = np.c_[grad_batch, d]
- # grad = sum(grad_batch) / batch_size
- return 0
- if __name__ == '__main__':
- unittest.main()
|