1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import unittest
- import numpy as np
- from federatedml.feature.instance import Instance
- from federatedml.optim.gradient.homo_lr_gradient import LogisticGradient, TaylorLogisticGradient
- from federatedml.secureprotol import PaillierEncrypt
- class TestHomoLRGradient(unittest.TestCase):
- def setUp(self):
- self.paillier_encrypt = PaillierEncrypt()
- self.paillier_encrypt.generate_key()
- self.gradient_operator = LogisticGradient()
- self.taylor_operator = TaylorLogisticGradient()
- self.X = np.array([[1, 2, 3, 4, 5], [3, 2, 4, 5, 1], [2, 2, 3, 1, 1, ]]) / 10
- self.X1 = np.c_[self.X, np.ones(3)]
- self.Y = np.array([[1], [1], [-1]])
- self.values = []
- for idx, x in enumerate(self.X):
- inst = Instance(inst_id=idx, features=x, label=self.Y[idx])
- self.values.append((idx, inst))
- self.values1 = []
- for idx, x in enumerate(self.X1):
- inst = Instance(inst_id=idx, features=x, label=self.Y[idx])
- self.values1.append((idx, inst))
- self.coef = np.array([2, 2.3, 3, 4, 2.1]) / 10
- self.coef1 = np.append(self.coef, [1])
- def test_gradient_length(self):
- fit_intercept = False
- grad = self.gradient_operator.compute_gradient(self.values, self.coef, 0, fit_intercept)
- self.assertEqual(grad.shape[0], self.X.shape[1])
- taylor_grad = self.taylor_operator.compute_gradient(self.values, self.coef, 0, fit_intercept)
- self.assertEqual(taylor_grad.shape[0], self.X.shape[1])
- self.assertTrue(np.sum(grad - taylor_grad) < 0.0001)
- fit_intercept = True
- grad = self.gradient_operator.compute_gradient(self.values, self.coef, 0, fit_intercept)
- self.assertEqual(grad.shape[0], self.X.shape[1] + 1)
- taylor_grad = self.taylor_operator.compute_gradient(self.values, self.coef, 0, fit_intercept)
- self.assertEqual(taylor_grad.shape[0], self.X.shape[1] + 1)
- self.assertTrue(np.sum(grad - taylor_grad) < 0.0001)
- if __name__ == '__main__':
- unittest.main()
|