123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import copy
- from federatedml.param.base_param import BaseParam
- from federatedml.param.predict_param import PredictParam
- class LocalBaselineParam(BaseParam):
- """
- Define the local baseline model param
- Parameters
- ----------
- model_name : str
- sklearn model used to train on baseline model
- model_opts : dict or none, default None
- Param to be used as input into baseline model
- predict_param : PredictParam object, default: default PredictParam object
- predict param
- need_run: bool, default True
- Indicate if this module needed to be run
- """
- def __init__(self, model_name="LogisticRegression", model_opts=None, predict_param=PredictParam(), need_run=True):
- super(LocalBaselineParam, self).__init__()
- self.model_name = model_name
- self.model_opts = model_opts
- self.predict_param = copy.deepcopy(predict_param)
- self.need_run = need_run
- def check(self):
- descr = "local baseline param"
- self.model_name = self.check_and_change_lower(self.model_name,
- ["logisticregression"],
- descr)
- self.check_boolean(self.need_run, descr)
- if self.model_opts is not None:
- if not isinstance(self.model_opts, dict):
- raise ValueError(descr + " model_opts must be None or dict.")
- if self.model_opts is None:
- self.model_opts = {}
- self.predict_param.check()
- return True
|