123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
-
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
-
- pipeline = PipeLine()
-
- pipeline.set_initiator(role='guest', party_id=guest)
-
- pipeline.set_roles(guest=guest, host=host)
-
- reader_0 = Reader(name="reader_0")
-
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
-
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
-
- data_transform_0 = DataTransform(name="data_transform_0")
-
- data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
-
- data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
-
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
-
- intersection_0 = Intersection(name="intersection_0")
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- binning_param = {
- "method": "quantile",
- "compress_thres": 10000,
- "head_size": 10000,
- "error": 0.001,
- "bin_num": 10,
- "bin_indexes": -1,
- "bin_names": None,
- "category_indexes": None,
- "category_names": None,
- "adjustment_factor": 0.5,
- "local_only": True,
- "transform_param": {
- "transform_cols": -1,
- "transform_names": None,
- "transform_type": "bin_num"
- }
- }
- hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0", **binning_param)
- pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data))
- selection_param = {
- "select_col_indexes": -1,
- "select_names": [],
- "filter_methods": [
- "iv_filter"
- ],
- "iv_param": {
- "metrics": "iv",
- "filter_type": "threshold",
- "select_federated": False,
- "threshold": 1
- }
- }
- hetero_feature_selection_0 = HeteroFeatureSelection(name="hetero_feature_selection_0", **selection_param)
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=intersection_0.output.data),
- model=Model(isometric_model=hetero_feature_binning_0.output.model))
-
- pipeline.compile()
- pipeline.fit()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|