pipeline_component.md 10 KB

Components

Each Component wraps a FederatedML Module. Modules implement machine learning algorithms on federated learning, while Components provide convenient interface for easy model building.

Interface

Input

Input encapsulates all upstream input to a component in a job workflow. There are three classes of input: data, cache, and model. Not all components have all three classes of input, and a component may accept only some types of the class. Note that only Intersection may have cache input. For information on each components' input, check the list.

Here is an example to access a component's input:

from pipeline.component import DataTransform
data_transform_0 = DataTransform(name="data_transform_0")
input_all = data_transform_0.input
input_data = data_transform_0.input.data
input_model = data_transform_0.input.model

Output

Same as Input, Output encapsulates output data, cache, and model of component in a FATE job. Not all components have all classes of outputs. Note that only Intersection may have cache output. For information on each components' output, check the list.

Here is an example to access a component's output:

from pipeline.component import DataTransform
data_transform_0 = DataTransform(name="data_transform_0")
output_all = data_transform_0.output
output_data = data_transform_0.output.data
output_model = data_transform_0.output.model

Meanwhile, to download components' output table or model, please use task info interface.

Data

In most cases, data sets are wrapped into data when being passed between modules. For instance, in the mini demo, data output of data_transform_0 is set as data input to intersection_0.

pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))

For data sets used in different modeling stages (e.g., train & validate) of the same component, additional keywords train_data and validate_data are used to distinguish data sets. Also from mini demo, result from intersection_0 and intersection_1 are set as train and validate data of hetero logistic regression, respectively.

pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data,
                                              validate_data=intersection_1.output.data))

Another case of using keywords train_data and validate_data is to use data output from DataSplit module, which always has three data outputs: train_data, validate_data, and test_data.

pipeline.add_component(hetero_lr_0,
                       data=Data(train_data=hetero_data_split_0.output.data.train_data))

A special data type is predict_input. predict_input is only used for specifying data input when running prediction task.

Here is an example of running prediction with an upstream model within the same pipeline:

pipeline.add_component(hetero_lr_1,
                       data=Data(predict_input=hetero_data_split_0.output.data.test_data),
                       model=Model(model=hetero_lr_0))

To run prediction with with new data, data source needs to be updated in prediction job. Below is an example from mini demo, where data input of original data_transform_0 component is set to be the data output from reader_2.

reader_2 = Reader(name="reader_2")
reader_2.get_party_instance(role="guest", party_id=guest).component_param(table=guest_eval_data)
reader_2.get_party_instance(role="host", party_id=host).component_param(table=host_eval_data)
# add data reader onto predict pipeline
predict_pipeline.add_component(reader_2)
predict_pipeline.add_component(pipeline,
                               data=Data(predict_input={pipeline.data_transform_0.input.data: reader_2.output.data}))

Below lists all five types of data and whether Input and Output include them.

Data Name Input Output Use Case
data Yes Yes single data input or output
train_data Yes Yes model training; output of DataSplit component
validate_data Yes Yes model training with validate data; output of DataSplit component
test_data No Yes output of DataSplit component
predict_input Yes No model prediction

Data

All input and output data of components need to be wrapped into Data objects when being passed between components. For information on valid data types of each component, check the list. Here is a an example of chaining components with different types of data input and output:

from pipeline.backend.pipeline import Pipeline
from pipeline.component import DataTransform, Intersection, HeteroDataSplit, HeteroLR
# initialize a pipeline
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest)
# define all components
data_transform_0 = DataTransform(name="data_transform_0")
data_split = HeteroDataSplit(name="data_split_0")
hetero_lr_0 = HeteroLR(name="hetero_lr_0", max_iter=20)
# chain together all components
pipeline.add_component(reader_0)
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
pipeline.add_component(hetero_data_split_0, data=Data(data=intersection_0.output.data))
pipeline.add_component(hetero_lr_0, data=Data(train_data=hetero_data_split_0.output.data.train_data,
                                              validate_data=hetero_data_split_0.output.data.test_data))

Model

There are two types of Model: model andisometric_model. When the current component is of the same class as the previous component, if receiving model, the current component will replicate all model parameters from the previous component. When a model from previous component is used as input but the current component is of different class from the previous component, isometric_model is used.

Check below for a case from mini demo, where model from data_transform_0 is passed to data_transform_1.

pipeline.add_component(data_transform_1,
                       data=Data(data=reader_1.output.data),
                       model=Model(data_transform_0.output.model))

Here is a case of using isometric model. HeteroFeatureSelection uses isometric_model from HeteroFeatureBinning to select the most important features.

pipeline.add_component(hetero_feature_selection_0,
                       data=Data(data=intersection_0.output.data),
                       isometric_model=Model(hetero_feature_binning_0.output.model))
Warning

Please note that when using stepwise or cross validation method, components do not have model output. For information on valid model types of each components, check the list.

Cache

Cache is only available for Intersection component. Please refer here for an example of using cache with intersection.

Below code sets cache output from intersection_0 as cache input of intersection_1.

pipeline.add_component(intersection_1, data=Data(data=data_transform_0.output.data), cache=Cache(intersect_0.output.cache))

To load cache from another job, use CacheLoader component. In this demo, result from some previous job is loaded into intersection_0 as cache input.

pipeline.add_component(cache_loader_0)
pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data), cache=Cache(cache_loader_0.output.cache))

Parameter

Parameters of underlying module can be set for all job participants or per individual participant.

  1. Parameters for all participants may be specified when defining a component:
from pipeline.component import DataTransform
data_transform_0 = DataTransform(name="data_transform_0", input_format="dense", output_format="dense",
                  outlier_replace=False)
  1. Parameters can be set for each party individually:
# set guest data_transform_0 component parameters
guest_data_transform_0 = data_transform_0.get_party_instance(role='guest', party_id=9999)
guest_data_transform_0.component_param(with_label=True)
# set host data_transform_0 component parameters
data_transform_0.get_party_instance(role='host', party_id=10000).component_param(with_label=False)

Task Info

Output data and model information of Components can be retrieved with Pipeline task info API. Currently Pipeline support these four types of query on components:

  1. get_output_data: returns downloaded output data; use parameter limits to limit output lines
  2. get_output_data_table: returns output data table information(including table name and namespace)
  3. get_model_param: returns fitted model parameters
  4. get_summary: returns model summary

To obtain output of a component, the component needs to be first extracted from pipeline:

print(pipeline.get_component("data_transform_0").get_output_data(limits=10))