12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- import pandas
- from sklearn.linear_model import SGDClassifier
- from sklearn.metrics import roc_auc_score, precision_score, accuracy_score, recall_score, roc_curve
- import os
- from pipeline.utils.tools import JobConfig
- def main(config="../../config.yaml", param="./vechile_config.yaml"):
- # obtain config
- if isinstance(param, str):
- param = JobConfig.load_from_file(param)
- assert isinstance(param, dict)
- data_guest = param["data_guest"]
- data_host = param["data_host"]
- idx = param["idx"]
- label_name = param["label_name"]
- if isinstance(config, str):
- config = JobConfig.load_from_file(config)
- print(f"config: {config}")
- data_base_dir = config["data_base_dir"]
- else:
- data_base_dir = config.data_base_dir
- config_param = {
- "penalty": param["penalty"],
- "max_iter": 100,
- "alpha": param["alpha"],
- "learning_rate": "optimal",
- "eta0": param["learning_rate"],
- "random_state": 105
- }
- # prepare data
- df_guest = pandas.read_csv(os.path.join(data_base_dir, data_guest), index_col=idx)
- df_host = pandas.read_csv(os.path.join(data_base_dir, data_host), index_col=idx)
- df = df_guest.join(df_host, rsuffix="host")
- y = df[label_name]
- X = df.drop(label_name, axis=1)
- # x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
- x_train, x_test, y_train, y_test = X, X, y, y
- # lm = LogisticRegression(max_iter=20)
- lm = SGDClassifier(loss="log", **config_param)
- lm_fit = lm.fit(x_train, y_train)
- y_pred = lm_fit.predict(x_test)
- y_prob = lm_fit.predict_proba(x_test)[:, 1]
- try:
- auc_score = roc_auc_score(y_test, y_prob)
- except BaseException:
- print(f"no auc score available")
- return
- recall = recall_score(y_test, y_pred, average="macro")
- pr = precision_score(y_test, y_pred, average="macro")
- acc = accuracy_score(y_test, y_pred)
- # y_predict_proba = est.predict_proba(X_test)[:, 1]
- fpr, tpr, thresholds = roc_curve(y_test, y_prob)
- ks = max(tpr - fpr)
- result = {"auc": auc_score, "recall": recall, "precision": pr, "accuracy": acc}
- print(result)
- print(f"coef_: {lm_fit.coef_}, intercept_: {lm_fit.intercept_}, n_iter: {lm_fit.n_iter_}")
- return {}, result
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("BENCHMARK-QUALITY SKLEARN JOB")
- parser.add_argument("-p", "--param", type=str, default="./breast_config.yaml",
- help="config file for params")
- args = parser.parse_args()
- main(param=args.param)
|