123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- import torch as t
- from torch import nn
- from pipeline import fate_torch_hook
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component.nn import DatasetParam
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import HeteroNN
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data, Model
- from pipeline.utils.tools import load_job_config, JobConfig
- from federatedml.evaluation.metrics import classification_metric
- from fate_test.utils import extract_data, parse_summary_result
- fate_torch_hook(t)
- def build(param, shape1, shape2):
- guest_bottom = t.nn.Sequential(
- nn.Linear(shape1, param["bottom_layer_units"]),
- nn.ReLU()
- )
- host_bottom = t.nn.Sequential(
- nn.Linear(shape2, param["bottom_layer_units"]),
- nn.ReLU()
- )
- interactive_layer = t.nn.InteractiveLayer(
- guest_dim=param["bottom_layer_units"],
- host_dim=param["bottom_layer_units"],
- host_num=1,
- out_dim=param["interactive_layer_units"])
- act = nn.Sigmoid() if param["top_layer_units"] == 1 else nn.Softmax(dim=1)
- top_layer = t.nn.Sequential(
- t.nn.Linear(
- param["interactive_layer_units"],
- param["top_layer_units"]),
- act)
- return guest_bottom, host_bottom, interactive_layer, top_layer
- def main(
- config="../../config.yaml",
- param="./hetero_nn_breast_config.yaml",
- namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- if isinstance(param, str):
- param = JobConfig.load_from_file(param)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- guest_train_data = {
- "name": param["guest_table_name"],
- "namespace": f"experiment{namespace}"}
- host_train_data = {
- "name": param["host_table_name"],
- "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(
- role='guest', party_id=guest).set_roles(
- guest=guest, host=host)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(
- role='guest',
- party_id=guest).component_param(
- table=guest_train_data)
- reader_0.get_party_instance(
- role='host',
- party_id=host).component_param(
- table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0")
- data_transform_0.get_party_instance(
- role='guest',
- party_id=guest).component_param(
- with_label=True)
- data_transform_0.get_party_instance(
- role='host', party_id=host).component_param(
- with_label=False)
- intersection_0 = Intersection(name="intersection_0")
- guest_bottom, host_bottom, interactive_layer, top_layer = build(
- param, param['shape1'], param['shape2'])
- if param["loss"] == "categorical_crossentropy":
- loss = t.nn.CrossEntropyLoss()
- ds_param = DatasetParam(
- dataset_name='table',
- flatten_label=True,
- label_dtype='long')
- else:
- loss = t.nn.BCELoss()
- ds_param = DatasetParam(dataset_name='table')
- hetero_nn_0 = HeteroNN(
- name="hetero_nn_0",
- epochs=param["epochs"],
- interactive_layer_lr=param["learning_rate"],
- batch_size=param["batch_size"],
- seed=100,
- dataset=ds_param)
- guest_nn_0 = hetero_nn_0.get_party_instance(role='guest', party_id=guest)
- host_nn_0 = hetero_nn_0.get_party_instance(role='host', party_id=host)
- guest_nn_0.add_bottom_model(guest_bottom)
- guest_nn_0.add_top_model(top_layer)
- host_nn_0.add_bottom_model(host_bottom)
- hetero_nn_0.set_interactive_layer(interactive_layer)
- hetero_nn_0.compile(
- optimizer=t.optim.Adam(
- lr=param['learning_rate']),
- loss=loss)
- hetero_nn_1 = HeteroNN(name="hetero_nn_1")
- if param["loss"] == "categorical_crossentropy":
- eval_type = "multi"
- else:
- eval_type = "binary"
- evaluation_0 = Evaluation(name="evaluation_0", eval_type=eval_type)
- pipeline.add_component(reader_0)
- pipeline.add_component(
- data_transform_0, data=Data(
- data=reader_0.output.data))
- pipeline.add_component(
- intersection_0, data=Data(
- data=data_transform_0.output.data))
- pipeline.add_component(
- hetero_nn_0, data=Data(
- train_data=intersection_0.output.data))
- pipeline.add_component(
- hetero_nn_1, data=Data(
- test_data=intersection_0.output.data), model=Model(
- hetero_nn_0.output.model))
- pipeline.add_component(
- evaluation_0, data=Data(
- data=hetero_nn_0.output.data))
- pipeline.compile()
- pipeline.fit()
- nn_0_data = pipeline.get_component("hetero_nn_0").get_output_data()
- nn_1_data = pipeline.get_component("hetero_nn_1").get_output_data()
- nn_0_score = extract_data(nn_0_data, "predict_result")
- nn_0_label = extract_data(nn_0_data, "label")
- nn_1_score = extract_data(nn_1_data, "predict_result")
- nn_1_label = extract_data(nn_1_data, "label")
- nn_0_score_label = extract_data(nn_0_data, "predict_result", keep_id=True)
- nn_1_score_label = extract_data(nn_1_data, "predict_result", keep_id=True)
- metric_summary = parse_summary_result(
- pipeline.get_component("evaluation_0").get_summary())
- if eval_type == "binary":
- metric_nn = {
- "score_diversity_ratio": classification_metric.Distribution.compute(
- nn_0_score_label,
- nn_1_score_label),
- "ks_2samp": classification_metric.KSTest.compute(
- nn_0_score,
- nn_1_score),
- "mAP_D_value": classification_metric.AveragePrecisionScore().compute(
- nn_0_score,
- nn_1_score,
- nn_0_label,
- nn_1_label)}
- metric_summary["distribution_metrics"] = {"hetero_nn": metric_nn}
- elif eval_type == "multi":
- metric_nn = {
- "score_diversity_ratio": classification_metric.Distribution.compute(
- nn_0_score_label, nn_1_score_label)}
- metric_summary["distribution_metrics"] = {"hetero_nn": metric_nn}
- data_summary = {
- "train": {
- "guest": guest_train_data["name"],
- "host": host_train_data["name"]},
- "test": {
- "guest": guest_train_data["name"],
- "host": host_train_data["name"]}}
- return data_summary, metric_summary
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("BENCHMARK-QUALITY PIPELINE JOB")
- parser.add_argument("-config", type=str,
- help="config file")
- parser.add_argument("-param", type=str,
- help="config file for params")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config, args.param)
- else:
- main()
|