Shellmiao 9279d1873b Add projects | 1 рік тому | |
---|---|---|
.. | ||
README.md | 1 рік тому | |
data_transform_testsuite.json | 1 рік тому | |
test_data_transform_dense_conf.json | 1 рік тому | |
test_data_transform_dense_match_id_conf.json | 1 рік тому | |
test_data_transform_dsl.json | 1 рік тому | |
test_data_transform_match_id_dsl.json | 1 рік тому | |
test_data_transform_missing_fill_conf.json | 1 рік тому | |
test_data_transform_svmlight.json | 1 рік тому | |
test_data_transform_tag_value_conf.json | 1 рік тому | |
test_data_transform_tag_value_match_id_conf.json | 1 рік тому | |
test_data_transform_validate_dsl.json | 1 рік тому |
This section introduces the dsl and conf for different types of tasks.
Dense InputFormat Task:
example-data: (1) guest: breast_hetero_guest.csv (2) host: breast_hetero_host.csv
dsl: test_data_transform_dsl.json
runtime_config : test_data_transform_dense_conf.json
TagValue InputFormat Task:
example-data: (1) guest: breast_hetero_guest.csv
(2) host: tag_value_1000_140.csv
dsl: test_data_transform_dsl.json
runtime_config: test_data_transform_tag_value_conf.json
Input Data With Missing Value:
example-data: (1) guest: ionosphere_scale_hetero_guest.csv (2) host: ionosphere_scale_hetero_host.csv
dsl: test_data_transform_dsl.json
runtime_config : test_data_transform_missing_fill_conf.json
SVM-Light InputFormat Task:
examples-data: (1) guest: svmlight_guest.csv (2) host: svmlight_host.csv
dsl: test_data_transform_validate_dsl.json
runtime_config: test_data_transform_svmlight.json
Dense InputFormat With MatchID Task:
example-data: sample with Task.1, but should upload with extend_sid=True
dsl: test_data_transform_match_id_dsl.json
runtime_config: test_data_transform_dense_match_id_conf.json
TagValue InputFormat With MatchID Task:
example-data: sample with Task.1, but should upload with extend_sid=True
dsl: test_data_transform_match_id_dsl.json
runtime_config: test_data_transform_tag_value_match_id_conf.json
Users can use following commands to run a task.
flow job submit -c ${runtime_config} -d ${dsl}
Moreover, after successfully running the training task, you can use it to predict too.