Shellmiao 9279d1873b Add projects 1 gadu atpakaļ
..
README.md 9279d1873b Add projects 1 gadu atpakaļ
hetero_logistic_regression_testsuite.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_batch_random_strategy_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_batch_random_strategy_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_cv_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_cv_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_early_stop_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_early_stop_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_feature_engineering_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_feature_engineering_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_multi_host_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_multi_host_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_normal_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_normal_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_normal_predict_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_normal_predict_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_one_vs_all_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_one_vs_all_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_ovr_cv_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_ovr_cv_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_ovr_validate_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_ovr_validate_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sample_weights_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sample_weights_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sparse_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sparse_cv_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sparse_cv_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_sparse_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_validate_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_validate_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_warm_start_conf.json 9279d1873b Add projects 1 gadu atpakaļ
hetero_lr_warm_start_dsl.json 9279d1873b Add projects 1 gadu atpakaļ

README.md

Hetero Logistic Regression Configuration Usage Guide.

This section introduces the dsl and conf for usage of different type of task.

Example Task.

  1. Train_task: dsl: hetero_lr_normal_dsl.json runtime_config : hetero_lr_normal_conf.json

  2. Train, test and evaluation task: dsl: hetero_lr_validate_dsl.json runtime_config: hetero_lr_validate_conf.json

  3. Cross Validation Task(with fold history data output of predict score): dsl: hetero_lr_cv_dsl.json runtime_config: hetero_lr_cv_conf.json

  4. One vs Rest Task: dsl: hetero_lr_one_vs_all_dsl.json conf: hetero_lr_one_vs_all_conf.json

  5. LR with feature engineering task dsl: hetero_lr_feature_engineering_dsl.json conf: hetero_lr_feature_engineering_conf.json

  6. Multi-host training task: dsl: hetero_lr_multi_host_dsl.json conf: hetero_lr_multi_host_conf.json

  7. lr_sparse training task: "conf": hetero_lr_sparse_conf.json, "dsl": hetero_lr_sparse_dsl.json

  8. lr_sparse_sqn task: "conf": "hetero_lr_sparse_sqn_conf.json", "dsl": "hetero_lr_sparse_sqn_dsl.json"

  9. lr_ovr_cv task: "conf": "hetero_lr_ovr_cv_conf.json", "dsl": "hetero_lr_ovr_cv_dsl.json"

  10. lr_sparse_cv task: "conf": "hetero_lr_sparse_cv_conf.json", "dsl": "hetero_lr_sparse_cv_dsl.json"

  11. lr_ovr_sqn task: "conf": "hetero_lr_ovr_sqn_conf.json", "dsl": "hetero_lr_ovr_sqn_dsl.json"

  12. lr_sqn task: "conf": "hetero_lr_sqn_conf.json", "dsl": "hetero_lr_sqn_dsl.json"

  13. early_stop_lr task: "conf": "hetero_lr_early_stop_conf.json", "dsl": "hetero_lr_early_stop_dsl.json"

  14. Test Task: dsl: hetero-lr-normal-predict-dsl.json conf: hetero-lr-normal-predict-conf.json deps: Train_task

  15. Warm start task: dsl: hetero_lr_warm_start_dsl.json conf: hetero_lr_warm_start_conf.json

Users can use following commands to running the task.

flow job submit -c ${runtime_config} -d ${dsl}

After having finished a successful training task, you can use it to predict, you can use the obtained model to perform prediction. You need to add the corresponding model id and model version to the configuration file