This section introduces the dsl and conf for usage of different types of tasks.
Train_task: dsl: hetero_lr_normal_dsl.json runtime_config : hetero_lr_normal_conf.json
LR Compute Loss: dsl: hetero_lr_compute_loss_dsl.json runtime_config: hetero_lr_compute_loss_conf.json
Cross Validation Task(with fold history data output of predict score): dsl: hetero_lr_cv_dsl.json runtime_config: hetero_lr_cv_conf.json
One vs Rest(OVR) Task: dsl: hetero_lr_ovr_dsl.json conf: hetero_lr_ovr_conf.json
LR with validation: dsl: hetero_lr_with_validate_dsl.json conf: hetero_lr_with_validate_conf.json
LR with Warm start task: dsl: hetero_lr_warm_start_dsl.json conf: hetero_lr_warm_start_conf.json
LR with Encrypted Reveal in Host task: dsl: hetero_lr_encrypted_reveal_in_host_dsl.json conf: hetero_lr_encrypted_reveal_in_host_conf.json
LR L1 penalty task: dsl: hetero_lr_l1_dsl.json conf: hetero_lr_l1_conf.json
OVR LR with Encrypted Reveal in Host task: dsl: hetero_lr_ovr_encrypted_reveal_in_host_dsl.json conf: hetero_lr_ovr_encrypted_reveal_in_host_conf.json
LR OVR None-penalty task: dsl: hetero_lr_ovr_none_penalty_dsl.json conf: hetero_lr_ovr_none_penalty_conf.json
LR OVR L1 penalty task: dsl: hetero_lr_ovr_l1_dsl.json conf: hetero_lr_ovr_l1_conf.json
LR with Large Init Weight: dsl: hetero_lr_large_init_w_compute_loss_dsl.json conf: hetero_lr_large_init_w_compute_loss_conf.json
LR without intercept: dsl: hetero_lr_normal_not_fit_intercept_dsl.json conf: hetero_lr_normal_not_fit_intercept_conf.json
LR Compute Loss without reveal: dsl: hetero_lr_compute_loss_not_reveal_dsl.json conf: hetero_lr_compute_loss_not_reveal_conf.json
LR Normal Predict: dsl: hetero_lr_normal_predict_dsl.json conf: hetero_lr_normal_predict_conf.json
LR OVR Predict: dsl: hetero_lr_ovr_predict_dsl.json conf: hetero_lr_ovr_predict_conf.json
Users can use following commands to running the task.
flow job submit -c ${runtime_config} -d ${dsl}
After having finished a successful training task, you can use it to predict, you can use the obtained model to perform prediction. You need to add the corresponding model id and model version to the configuration file