Shellmiao 9279d1873b Add projects 1 gadu atpakaļ
..
README.md 9279d1873b Add projects 1 gadu atpakaļ
homo-lr-normal-predict-conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo-lr-normal-predict-dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_logistic_regression_testsuite.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_cv_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_cv_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_eval_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_eval_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_multi_host_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_multi_host_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_one_vs_all_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_one_vs_all_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_train_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_train_dsl.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_train_eval_conf.json 9279d1873b Add projects 1 gadu atpakaļ
homo_lr_train_eval_dsl.json 9279d1873b Add projects 1 gadu atpakaļ

README.md

Homo Logistic Regression Configuration Usage Guide.

This section introduces the dsl and conf for usage of different type of task.

Example Task.

  1. Train Task: dsl: homo_lr_train_dsl.json runtime_config : homo_lr_train_conf.json

  2. Train, test and evaluation task: dsl: homo_lr_train_eval_dsl.json runtime_config: homo_lr_train_eval_conf.json

  3. Cross Validation Task: dsl: homo_lr_cv_dsl.json runtime_config: homo_lr_cv_conf.json

  4. Multi-host Task: dsl: homo_lr_multi_host_dsl.json conf: homo_lr_multi_host_conf.json

    Please note that we use a same data set for every host. This is just a demo showing how tow config multi-host task

  5. predict Task: dsl: homo-lr-normal-predict-dsl.json conf: homo-lr-normal-predict-conf.json

  6. single_eval: dsl: homo_lr_eval_dsl.json conf: homo_lr_eval_conf.json

  7. Multi-Class Train Task: dsl: homo_lr_one_vs_all_dsl.json conf: homo_lr_one_vs_all_conf.json

  8. Multi-Class Train With Paillier Task: dsl: homo_lr_one_vs_all_encrypted_host_dsl.json conf: homo_lr_one_vs_all_encrypted_host_conf.json

Users can use following commands to running the task.

flow job submit -c ${runtime_config} -d ${dsl}

After having finished a successful training task, you can use it to predict, you can use the obtained model to perform prediction. You need to add the corresponding model id and model version to the configuration file