1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import HeteroPearson
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0")
- data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True)
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
- intersection_0 = Intersection(name="intersection_0")
- hetero_pearson_0 = HeteroPearson(name='hetero_pearson_0', column_indexes=-1)
- hetero_binning_0 = HeteroFeatureBinning(name='hetero_binning_0')
- selection_param = {
- "select_col_indexes": -1,
- "select_names": [],
- "filter_methods": [
- "vif_filter",
- "correlation_filter"
- ],
- "vif_param": {
- "threshold": 5
- },
- "correlation_param": {
- "sort_metric": "iv",
- "threshold": 0.5,
- "select_federated": False
- }
- }
- hetero_feature_selection_0 = HeteroFeatureSelection(name="hetero_feature_selection_0", **selection_param)
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(hetero_binning_0, data=Data(data=intersection_0.output.data))
- pipeline.add_component(hetero_pearson_0, data=Data(data=intersection_0.output.data))
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=intersection_0.output.data),
- model=Model(isometric_model=[hetero_pearson_0.output.model,
- hetero_binning_0.output.model]))
- pipeline.compile()
- pipeline.fit()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|