123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import HeteroKmeans
- from pipeline.component import Intersection
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import Evaluation
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- # initialize pipeline
- pipeline = PipeLine()
- # set job initiator
- pipeline.set_initiator(role='guest', party_id=guest)
- # set participants information
- pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)
- # define Reader components to read in data
- reader_0 = Reader(name="reader_0")
- # configure Reader for guest
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- # configure Reader for host
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- # define DataTransform components
- data_transform_0 = DataTransform(name="data_transform_0") # start component numbering at 0
- # get DataTransform party instance of guest
- data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
- # configure DataTransform for guest
- data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
- # get and configure DataTransform party instance of host
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
- # define Intersection components
- intersection_0 = Intersection(name="intersection_0")
- param = {
- "name": 'hetero_feature_binning_0',
- "method": 'optimal',
- "optimal_binning_param": {
- "metric_method": "iv"
- },
- "bin_indexes": -1
- }
- hetero_feature_binning_0 = HeteroFeatureBinning(**param)
- param = {
- "name": 'hetero_feature_selection_0',
- "filter_methods": ["manually", "iv_filter"],
- "manually_param": {
- "filter_out_indexes": [1]
- },
- "iv_param": {
- "metrics": ["iv", "iv"],
- "filter_type": ["top_k", "threshold"],
- "take_high": [True, True],
- "threshold": [10, 0.001]
- },
- "select_col_indexes": -1
- }
- hetero_feature_selection_0 = HeteroFeatureSelection(**param)
- param = {
- "k": 3,
- "max_iter": 10
- }
- hetero_kmeans_0 = HeteroKmeans(name='hetero_kmeans_0', **param)
- evaluation_0 = Evaluation(name='evaluation_0', eval_type='clustering')
- # add components to pipeline, in order of task execution
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- # set data input sources of intersection components
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- # set train & validate data of hetero_lr_0 component
- pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data))
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=intersection_0.output.data),
- model=Model(isometric_model=hetero_feature_binning_0.output.model))
- pipeline.add_component(hetero_kmeans_0, data=Data(train_data=hetero_feature_selection_0.output.data))
- print(f"data: {hetero_kmeans_0.output.data.data[0]}")
- pipeline.add_component(evaluation_0, data=Data(data=hetero_kmeans_0.output.data.data[0]))
- # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
- pipeline.compile()
- # fit model
- pipeline.fit()
- # query component summary
- print(pipeline.get_component("hetero_kmeans_0").get_summary())
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|