123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import FeatureScale
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import HeteroLR
- from pipeline.component import Intersection
- from pipeline.component import OneHotEncoder
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- # initialize pipeline
- pipeline = PipeLine()
- # set job initiator
- pipeline.set_initiator(role='guest', party_id=guest)
- # set participants information
- pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)
- # define Reader components to read in data
- reader_0 = Reader(name="reader_0")
- # configure Reader for guest
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- # configure Reader for host
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- # define DataTransform components
- data_transform_0 = DataTransform(name="data_transform_0") # start component numbering at 0
- # get DataTransform party instance of guest
- data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
- # configure DataTransform for guest
- data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
- # get and configure DataTransform party instance of host
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
- # define Intersection components
- intersection_0 = Intersection(name="intersection_0")
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- feature_scale_0 = FeatureScale(name='feature_scale_0', method="standard_scale",
- need_run=True)
- pipeline.add_component(feature_scale_0, data=Data(data=intersection_0.output.data))
- binning_param = {
- "method": "quantile",
- "compress_thres": 10000,
- "head_size": 10000,
- "error": 0.001,
- "bin_num": 10,
- "bin_indexes": -1,
- "adjustment_factor": 0.5,
- "local_only": False,
- "need_run": True,
- "transform_param": {
- "transform_cols": -1,
- "transform_type": "bin_num"
- }
- }
- hetero_feature_binning_0 = HeteroFeatureBinning(name='hetero_feature_binning_0',
- **binning_param)
- pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data))
- selection_param = {
- "select_col_indexes": -1,
- "filter_methods": [
- "manually",
- "iv_value_thres",
- "iv_percentile"
- ],
- "manually_param": {
- "filter_out_indexes": None
- },
- "iv_value_param": {
- "value_threshold": 1.0
- },
- "iv_percentile_param": {
- "percentile_threshold": 0.9
- },
- "need_run": True
- }
- hetero_feature_selection_0 = HeteroFeatureSelection(name='hetero_feature_selection_0',
- **selection_param)
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data),
- model=Model(isometric_model=[hetero_feature_binning_0.output.model]))
- onehot_param = {
- "transform_col_indexes": -1,
- "transform_col_names": None,
- "need_run": True
- }
- one_hot_encoder_0 = OneHotEncoder(name='one_hot_encoder_0', **onehot_param)
- pipeline.add_component(one_hot_encoder_0, data=Data(data=hetero_feature_selection_0.output.data))
- lr_param = {
- "penalty": "L2",
- "optimizer": "rmsprop",
- "tol": 1e-05,
- "alpha": 0.01,
- "max_iter": 10,
- "early_stop": "diff",
- "batch_size": -1,
- "learning_rate": 0.15,
- "init_param": {
- "init_method": "random_uniform"
- },
- "cv_param": {
- "n_splits": 5,
- "shuffle": False,
- "random_seed": 103,
- "need_cv": False
- }
- }
- hetero_lr_0 = HeteroLR(name="hetero_lr_0", **lr_param)
- pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_encoder_0.output.data))
- evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
- pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data))
- pipeline.compile()
- pipeline.fit()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|