pipeline-hetero-lr-converged-weight-diff-encrypted-not-reveal.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. #
  2. # Copyright 2019 The FATE Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import argparse
  17. import json
  18. from pipeline.backend.pipeline import PipeLine
  19. from pipeline.component import DataTransform
  20. from pipeline.component import Evaluation
  21. from pipeline.component import HeteroSSHELR
  22. from pipeline.component import Intersection
  23. from pipeline.component import Reader
  24. from pipeline.interface import Data
  25. from pipeline.utils.tools import load_job_config
  26. def prettify(response, verbose=True):
  27. if verbose:
  28. print(json.dumps(response, indent=4, ensure_ascii=False))
  29. print()
  30. return response
  31. def main(config="../../config.yaml", namespace=""):
  32. if isinstance(config, str):
  33. config = load_job_config(config)
  34. parties = config.parties
  35. guest = parties.guest[0]
  36. hosts = parties.host[0]
  37. guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
  38. host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
  39. # initialize pipeline
  40. pipeline = PipeLine()
  41. # set job initiator
  42. pipeline.set_initiator(role='guest', party_id=guest)
  43. # set participants information
  44. pipeline.set_roles(guest=guest, host=hosts)
  45. # define Reader components to read in data
  46. reader_0 = Reader(name="reader_0")
  47. # configure Reader for guest
  48. reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
  49. # configure Reader for host
  50. reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data)
  51. data_transform_0 = DataTransform(name="data_transform_0", output_format='dense')
  52. # get DataTransform party instance of guest
  53. data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
  54. # configure DataTransform for guest
  55. data_transform_0_guest_party_instance.component_param(with_label=True)
  56. # get and configure DataTransform party instance of host
  57. data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)
  58. # define Intersection components
  59. intersection_0 = Intersection(name="intersection_0")
  60. pipeline.add_component(reader_0)
  61. pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
  62. pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
  63. lr_param = {
  64. "name": "hetero_sshe_lr_0",
  65. "penalty": "L2",
  66. "optimizer": "sgd",
  67. "tol": 0.0001,
  68. "alpha": 0.01,
  69. "max_iter": 30,
  70. "early_stop": "weight_diff",
  71. "batch_size": -1,
  72. "learning_rate": 0.15,
  73. "init_param": {
  74. "init_method": "zeros",
  75. "fit_intercept": False
  76. },
  77. "encrypt_param": {
  78. "key_length": 1024
  79. },
  80. "reveal_every_iter": False,
  81. "reveal_strategy": "encrypted_reveal_in_host"
  82. }
  83. hetero_sshe_lr_0 = HeteroSSHELR(**lr_param)
  84. pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data))
  85. evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
  86. pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_0.output.data))
  87. pipeline.compile()
  88. # fit model
  89. pipeline.fit()
  90. # query component summary
  91. prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary())
  92. prettify(pipeline.get_component("evaluation_0").get_summary())
  93. pipeline.deploy_component([data_transform_0, intersection_0, hetero_sshe_lr_0])
  94. predict_pipeline = PipeLine()
  95. # add data reader onto predict pipeline
  96. predict_pipeline.add_component(reader_0)
  97. # add selected components from train pipeline onto predict pipeline
  98. # specify data source
  99. predict_pipeline.add_component(
  100. pipeline, data=Data(
  101. predict_input={
  102. pipeline.data_transform_0.input.data: reader_0.output.data}))
  103. # run predict model
  104. predict_pipeline.predict()
  105. return pipeline
  106. if __name__ == "__main__":
  107. parser = argparse.ArgumentParser("PIPELINE DEMO")
  108. parser.add_argument("-config", type=str,
  109. help="config file")
  110. args = parser.parse_args()
  111. if args.config is not None:
  112. main(args.config)
  113. else:
  114. main()