123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- import json
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import HeteroSSHELR
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.utils.tools import load_job_config
- def prettify(response, verbose=True):
- if verbose:
- print(json.dumps(response, indent=4, ensure_ascii=False))
- print()
- return response
- def main(config="../../config.yaml", namespace=""):
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- hosts = parties.host[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"}
- # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"}
- # initialize pipeline
- pipeline = PipeLine()
- # set job initiator
- pipeline.set_initiator(role='guest', party_id=guest)
- # set participants information
- pipeline.set_roles(guest=guest, host=hosts)
- # define Reader components to read in data
- reader_0 = Reader(name="reader_0")
- # configure Reader for guest
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- # configure Reader for host
- reader_0.get_party_instance(role='host', party_id=hosts).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0", output_format='dense')
- # get DataTransform party instance of guest
- data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
- # configure DataTransform for guest
- data_transform_0_guest_party_instance.component_param(with_label=True)
- # get and configure DataTransform party instance of host
- data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)
- # define Intersection components
- intersection_0 = Intersection(name="intersection_0")
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- lr_param = {
- "name": "hetero_sshe_lr_0",
- "penalty": "L2",
- "optimizer": "rmsprop",
- "tol": 0.0001,
- "alpha": 0.01,
- "max_iter": 30,
- "early_stop": "diff",
- "batch_size": -1,
- "learning_rate": 0.15,
- "init_param": {
- "init_method": "zeros",
- "fit_intercept": True
- },
- "encrypt_param": {
- "key_length": 1024
- },
- "cv_param": {
- "n_splits": 3,
- "shuffle": False,
- "random_seed": 103,
- "need_cv": True
- },
- "reveal_every_iter": True,
- "reveal_strategy": "respectively"
- }
- hetero_sshe_lr_0 = HeteroSSHELR(**lr_param)
- pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data))
- pipeline.compile()
- # fit model
- pipeline.fit()
- # query component summary
- prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary())
- # pipeline.deploy_component([data_transform_0, intersection_0, hetero_sshe_lr_0])
- #
- # predict_pipeline = PipeLine()
- # # add data reader onto predict pipeline
- # predict_pipeline.add_component(reader_0)
- # # add selected components from train pipeline onto predict pipeline
- # # specify data source
- # predict_pipeline.add_component(pipeline,
- # data=Data(predict_input={pipeline.data_transform_0.input.data: reader_0.output.data}))
- # # run predict model
- # predict_pipeline.predict(job_parameters)
- return pipeline
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|