123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.utils.tools import load_job_config
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import FeatureScale
- from pipeline.component import FederatedSample
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import HeteroLR
- from pipeline.component import HeteroSecureBoost
- from pipeline.component import Intersection
- from pipeline.component import OneHotEncoder
- from pipeline.component import Union
- from pipeline.component import LocalBaseline
- from pipeline.component import HeteroLinR
- from pipeline.component import HeteroPoisson
- from pipeline.component import HeteroSSHELR
- from pipeline.component import HeteroSSHELinR
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- """Note: This script is used for components regression only"""
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- reader_1 = Reader(name="reader_1")
- reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- reader_2 = Reader(name="reader_2")
- reader_2.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_2.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0")
- data_transform_0.get_party_instance(
- role='guest',
- party_id=guest).component_param(
- with_label=True,
- missing_fill=True,
- outlier_replace=True)
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False, missing_fill=True,
- outlier_replace=True)
- data_transform_1 = DataTransform(name="data_transform_1")
- data_transform_2 = DataTransform(name="data_transform_2")
- intersection_0 = Intersection(name="intersection_0")
- intersection_1 = Intersection(name="intersection_1")
- intersection_2 = Intersection(name="intersection_2")
- union_0 = Union(name="union_0")
- federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="downsample",
- fractions=[[0, 1.0], [1, 1.0]])
- feature_scale_0 = FeatureScale(name="feature_scale_0")
- feature_scale_1 = FeatureScale(name="feature_scale_1")
- hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0")
- hetero_feature_binning_1 = HeteroFeatureBinning(name="hetero_feature_binning_1")
- hetero_feature_selection_0 = HeteroFeatureSelection(name="hetero_feature_selection_0")
- hetero_feature_selection_1 = HeteroFeatureSelection(name="hetero_feature_selection_1")
- one_hot_0 = OneHotEncoder(name="one_hot_0")
- one_hot_1 = OneHotEncoder(name="one_hot_1")
- hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="rmsprop", tol=1e-5,
- init_param={"init_method": "random_uniform"},
- alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15)
- hetero_lr_1 = HeteroLR(name="hetero_lr_1")
- hetero_lr_2 = HeteroLR(name="hetero_lr_2", penalty="L2", optimizer="rmsprop", tol=1e-5,
- init_param={"init_method": "random_uniform"},
- alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15,
- cv_param={"n_splits": 5,
- "shuffle": True,
- "random_seed": 103,
- "need_cv": True})
- hetero_sshe_lr_0 = HeteroSSHELR(name="hetero_sshe_lr_0", reveal_every_iter=True, reveal_strategy="respectively",
- penalty="L2", optimizer="rmsprop", tol=1e-5, batch_size=320, learning_rate=0.15,
- init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3)
- hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1")
- local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
- model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
- "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr"})
- local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
- local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)
- local_baseline_1 = LocalBaseline(name="local_baseline_1")
- hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0", num_trees=3)
- hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1")
- hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2", num_trees=3,
- cv_param={"shuffle": False, "need_cv": True})
- hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001,
- alpha=0.01, max_iter=3, early_stop="weight_diff", batch_size=-1,
- learning_rate=0.15, decay=0.0, decay_sqrt=False,
- init_param={"init_method": "zeros"},
- floating_point_precision=23)
- hetero_linr_1 = HeteroLinR(name="hetero_linr_1")
- hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0", max_iter=5, early_stop="weight_diff", batch_size=-1)
- hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1")
- hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0", early_stop="weight_diff", max_iter=10,
- alpha=100.0, batch_size=-1, learning_rate=0.01, optimizer="rmsprop",
- exposure_colname="exposure", decay_sqrt=False, tol=0.001,
- init_param={"init_method": "zeros"}, penalty="L2")
- hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1")
- evaluation_0 = Evaluation(name="evaluation_0")
- evaluation_1 = Evaluation(name="evaluation_1")
- evaluation_2 = Evaluation(name="evaluation_2")
- pipeline.add_component(reader_0)
- pipeline.add_component(reader_1)
- pipeline.add_component(reader_2)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data),
- model=Model(model=data_transform_0.output.model))
- pipeline.add_component(data_transform_2, data=Data(data=reader_2.output.data),
- model=Model(model=data_transform_0.output.model))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data))
- pipeline.add_component(intersection_2, data=Data(data=data_transform_2.output.data))
- pipeline.add_component(union_0, data=Data(data=[intersection_0.output.data, intersection_2.output.data]))
- pipeline.add_component(federated_sample_0, data=Data(data=intersection_1.output.data))
- pipeline.add_component(feature_scale_0, data=Data(data=union_0.output.data))
- pipeline.add_component(feature_scale_1, data=Data(data=federated_sample_0.output.data),
- model=Model(model=feature_scale_0.output.model))
- pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data))
- pipeline.add_component(hetero_feature_binning_1, data=Data(data=feature_scale_1.output.data),
- model=Model(model=hetero_feature_binning_0.output.model))
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data))
- pipeline.add_component(hetero_feature_selection_1, data=Data(data=hetero_feature_binning_1.output.data),
- model=Model(model=hetero_feature_selection_0.output.model))
- pipeline.add_component(one_hot_0, data=Data(data=hetero_feature_selection_0.output.data))
- pipeline.add_component(one_hot_1, data=Data(data=hetero_feature_selection_1.output.data),
- model=Model(model=one_hot_0.output.model))
- pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_lr_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_lr_0.output.model))
- pipeline.add_component(hetero_lr_2, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(local_baseline_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(local_baseline_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=local_baseline_0.output.model))
- pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_sshe_lr_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_sshe_lr_0.output.model))
- pipeline.add_component(hetero_secureboost_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_secureboost_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_secureboost_0.output.model))
- pipeline.add_component(hetero_secureboost_2, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_linr_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_linr_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_linr_0.output.model))
- pipeline.add_component(hetero_sshe_linr_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_sshe_linr_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_sshe_linr_0.output.model))
- pipeline.add_component(hetero_poisson_0, data=Data(train_data=one_hot_0.output.data))
- pipeline.add_component(hetero_poisson_1, data=Data(test_data=one_hot_1.output.data),
- model=Model(model=hetero_poisson_0.output.model))
- pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_0.output.data, hetero_lr_1.output.data,
- hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data,
- local_baseline_0.output.data, local_baseline_1.output.data]))
- pipeline.add_component(evaluation_1,
- data=Data(
- data=[hetero_linr_0.output.data, hetero_linr_1.output.data,
- hetero_sshe_linr_0.output.data, hetero_linr_1.output.data]))
- pipeline.add_component(evaluation_2,
- data=Data(
- data=[hetero_poisson_0.output.data, hetero_poisson_1.output.data]))
- pipeline.compile()
- pipeline.fit()
- print(pipeline.get_component("evaluation_0").get_summary())
- print(pipeline.get_component("evaluation_1").get_summary())
- print(pipeline.get_component("evaluation_2").get_summary())
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|