12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pipeline.param.base_param import BaseParam
- class InitParam(BaseParam):
- """
- Initialize Parameters used in initializing a model.
- Parameters
- ----------
- init_method : {'random_uniform', 'random_normal', 'ones', 'zeros' or 'const'}
- Initial method.
- init_const : int or float, default: 1
- Required when init_method is 'const'. Specify the constant.
- fit_intercept : bool, default: True
- Whether to initialize the intercept or not.
- """
- def __init__(self, init_method='random_uniform', init_const=1, fit_intercept=True, random_seed=None):
- super().__init__()
- self.init_method = init_method
- self.init_const = init_const
- self.fit_intercept = fit_intercept
- self.random_seed = random_seed
- def check(self):
- if type(self.init_method).__name__ != "str":
- raise ValueError(
- "Init param's init_method {} not supported, should be str type".format(self.init_method))
- else:
- self.init_method = self.init_method.lower()
- if self.init_method not in ['random_uniform', 'random_normal', 'ones', 'zeros', 'const']:
- raise ValueError(
- "Init param's init_method {} not supported, init_method should in 'random_uniform',"
- " 'random_normal' 'ones', 'zeros' or 'const'".format(self.init_method))
- if type(self.init_const).__name__ not in ['int', 'float']:
- raise ValueError(
- "Init param's init_const {} not supported, should be int or float type".format(self.init_const))
- if type(self.fit_intercept).__name__ != 'bool':
- raise ValueError(
- "Init param's fit_intercept {} not supported, should be bool type".format(self.fit_intercept))
- if self.random_seed is not None:
- if type(self.random_seed).__name__ != 'int':
- raise ValueError(
- "Init param's random_seed {} not supported, should be int or float type".format(self.random_seed))
- return True
|