12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from pipeline.param.base_param import BaseParam
- import collections
- class SampleParam(BaseParam):
- """
- Define the sample method
- Parameters
- ----------
- mode: str, accepted 'random','stratified', 'exact_by_weight', specify sample to use, default: 'random'
- method: str, accepted 'downsample','upsample' only in this version. default: 'downsample'
- fractions: None or float or list, if mode equals to random, it should be a float number greater than 0,
- otherwise a list of elements of pairs like [label_i, sample_rate_i],
- e.g. [[0, 0.5], [1, 0.8], [2, 0.3]]. default: None
- random_state: int, RandomState instance or None, default: None
- need_run: bool, default True
- Indicate if this module needed to be run
- """
- def __init__(self, mode="random", method="downsample", fractions=None,
- random_state=None, task_type="hetero", need_run=True):
- self.mode = mode
- self.method = method
- self.fractions = fractions
- self.random_state = random_state
- self.task_type = task_type
- self.need_run = need_run
- def check(self):
- descr = "sample param"
- self.mode = self.check_and_change_lower(self.mode,
- ["random", "stratified", "exact_by_weight"],
- descr)
- self.method = self.check_and_change_lower(self.method,
- ["upsample", "downsample"],
- descr)
- if self.mode == "stratified" and self.fractions is not None:
- if not isinstance(self.fractions, list):
- raise ValueError("fractions of sample param when using stratified should be list")
- for ele in self.fractions:
- if not isinstance(ele, collections.Container) or len(ele) != 2:
- raise ValueError(
- "element in fractions of sample param using stratified should be a pair like [label_i, rate_i]")
- return True
|