123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from federatedml.protobuf.generated import feature_binning_param_pb2
- from federatedml.util import LOGGER
- class BinColResults(object):
- def __init__(self, woe_array=(), iv_array=(), event_count_array=(), non_event_count_array=(),
- event_rate_array=(), non_event_rate_array=(), iv=None, optimal_metric_array=()):
- self.woe_array = list(woe_array)
- self.iv_array = list(iv_array)
- self.event_count_array = list(event_count_array)
- self.non_event_count_array = list(non_event_count_array)
- self.event_rate_array = list(event_rate_array)
- self.non_event_rate_array = list(non_event_rate_array)
- self.split_points = None
- if iv is None:
- iv = 0
- for idx, woe in enumerate(self.woe_array):
- non_event_rate = non_event_count_array[idx]
- event_rate = event_rate_array[idx]
- iv += (non_event_rate - event_rate) * woe
- self.iv = iv
- self._bin_anonymous = None
- self.optimal_metric_array = list(optimal_metric_array)
- @property
- def bin_anonymous(self):
- if self.split_points is None or len(self.split_points) == 0:
- return []
- if self._bin_anonymous is None:
- return ["bin_" + str(i) for i in range(len(self.split_points))]
- return self._bin_anonymous
- @bin_anonymous.setter
- def bin_anonymous(self, x):
- self._bin_anonymous = x
- def set_split_points(self, split_points):
- self.split_points = split_points
- def set_optimal_metric(self, metric_array):
- self.optimal_metric_array = metric_array
- def get_split_points(self):
- return np.array(self.split_points)
- @property
- def is_woe_monotonic(self):
- """
- Check the woe is monotonic or not
- """
- woe_array = self.woe_array
- if len(woe_array) <= 1:
- return True
- is_increasing = all(x <= y for x, y in zip(woe_array, woe_array[1:]))
- is_decreasing = all(x >= y for x, y in zip(woe_array, woe_array[1:]))
- return is_increasing or is_decreasing
- @property
- def bin_nums(self):
- return len(self.woe_array)
- def result_dict(self):
- save_dict = self.__dict__
- save_dict['is_woe_monotonic'] = self.is_woe_monotonic
- save_dict['bin_nums'] = self.bin_nums
- return save_dict
- def reconstruct(self, iv_obj):
- self.woe_array = list(iv_obj.woe_array)
- self.iv_array = list(iv_obj.iv_array)
- self.event_count_array = list(iv_obj.event_count_array)
- self.non_event_count_array = list(iv_obj.non_event_count_array)
- self.event_rate_array = list(iv_obj.event_rate_array)
- self.non_event_rate_array = list(iv_obj.non_event_rate_array)
- self.split_points = list(iv_obj.split_points)
- self.iv = iv_obj.iv
- # new attribute since ver 1.10
- if hasattr(iv_obj, "optimal_metric_array"):
- self.optimal_metric_array = list(iv_obj.optimal_metric_array)
- def generate_pb_dict(self):
- result = {
- "woe_array": self.woe_array,
- "iv_array": self.iv_array,
- "event_count_array": self.event_count_array,
- "non_event_count_array": self.non_event_count_array,
- "event_rate_array": self.event_rate_array,
- "non_event_rate_array": self.non_event_rate_array,
- "split_points": self.split_points,
- "iv": self.iv,
- "is_woe_monotonic": self.is_woe_monotonic,
- "bin_nums": self.bin_nums,
- "bin_anonymous": self.bin_anonymous,
- "optimal_metric_array": self.optimal_metric_array
- }
- return result
- class SplitPointsResult(object):
- def __init__(self):
- self.split_results = {}
- self.optimal_metric = {}
- def put_col_split_points(self, col_name, split_points):
- self.split_results[col_name] = split_points
- def put_col_optimal_metric_array(self, col_name, metric_array):
- self.optimal_metric[col_name] = metric_array
- @property
- def all_split_points(self):
- return self.split_results
- @property
- def all_optimal_metric(self):
- return self.optimal_metric
- def get_split_points_array(self, col_names):
- split_points_result = []
- for col_name in col_names:
- if col_name not in self.split_results:
- continue
- split_points_result.append(self.split_results[col_name])
- return np.array(split_points_result)
- def to_json(self):
- return {k: list(v) for k, v in self.split_results.items()}
- class BinResults(object):
- def __init__(self):
- self.all_cols_results = {} # {col_name: BinColResult}
- self.role = ''
- self.party_id = ''
- def set_role_party(self, role, party_id):
- self.role = role
- self.party_id = party_id
- def put_col_results(self, col_name, col_results: BinColResults):
- ori_col_results = self.all_cols_results.get(col_name)
- if ori_col_results is not None:
- col_results.set_split_points(ori_col_results.get_split_points())
- self.all_cols_results[col_name] = col_results
- def put_col_split_points(self, col_name, split_points):
- col_results = self.all_cols_results.get(col_name, BinColResults())
- col_results.set_split_points(split_points)
- self.all_cols_results[col_name] = col_results
- def query_split_points(self, col_name):
- col_results = self.all_cols_results.get(col_name)
- if col_results is None:
- LOGGER.warning("Querying non-exist split_points")
- return None
- return col_results.split_points
- def put_optimal_metric_array(self, col_name, metric_array):
- col_results = self.all_cols_results.get(col_name, BinColResults())
- col_results.set_optimal_metric(metric_array)
- self.all_cols_results[col_name] = col_results
- @property
- def all_split_points(self):
- results = {}
- for col_name, col_result in self.all_cols_results.items():
- results[col_name] = col_result.get_split_points()
- return results
- @property
- def all_ivs(self):
- return [(col_name, x.iv) for col_name, x in self.all_cols_results.items()]
- @property
- def all_woes(self):
- return {col_name: x.woe_array for col_name, x in self.all_cols_results.items()}
- @property
- def all_monotonic(self):
- return {col_name: x.is_woe_monotonic for col_name, x in self.all_cols_results.items()}
- @property
- def all_optimal_metric(self):
- return {col_name: x.optimal_metric_array for col_name, x in self.all_cols_results.items()}
- def summary(self, split_points=None):
- if split_points is None:
- split_points = {}
- for col_name, x in self.all_cols_results.items():
- sp = x.get_split_points().tolist()
- split_points[col_name] = sp
- # split_points = {col_name: x.split_points for col_name, x in self.all_cols_results.items()}
- return {"iv": self.all_ivs,
- "woe": self.all_woes,
- "monotonic": self.all_monotonic,
- "split_points": split_points}
- def generated_pb(self, split_points=None):
- col_result_dict = {}
- if split_points is not None:
- for col_name, sp in split_points.items():
- self.put_col_split_points(col_name, sp)
- for col_name, col_bin_result in self.all_cols_results.items():
- bin_res_dict = col_bin_result.generate_pb_dict()
- # LOGGER.debug(f"col name: {col_name}, bin_res_dict: {bin_res_dict}")
- col_result_dict[col_name] = feature_binning_param_pb2.IVParam(**bin_res_dict)
- # LOGGER.debug("In generated_pb, role: {}, party_id: {}".format(self.role, self.party_id))
- result_pb = feature_binning_param_pb2.FeatureBinningResult(binning_result=col_result_dict,
- role=self.role,
- party_id=str(self.party_id))
- return result_pb
- def reconstruct(self, result_pb):
- self.role = result_pb.role
- self.party_id = result_pb.party_id
- binning_result = dict(result_pb.binning_result)
- for col_name, col_bin_result in binning_result.items():
- col_bin_obj = BinColResults()
- col_bin_obj.reconstruct(col_bin_result)
- self.all_cols_results[col_name] = col_bin_obj
- return self
- def update_anonymous(self, anonymous_header_dict):
- all_cols_results = dict()
- for col_name, col_bin_result in self.all_cols_results.items():
- updated_col_name = anonymous_header_dict[col_name]
- all_cols_results[updated_col_name] = col_bin_result
- self.all_cols_results = all_cols_results
- return self
- class MultiClassBinResult(BinResults):
- def __init__(self, labels):
- super().__init__()
- self.labels = labels
- if len(self.labels) == 2:
- self.is_multi_class = False
- self.bin_results = [BinResults()]
- else:
- self.is_multi_class = True
- self.bin_results = [BinResults() for _ in range(len(self.labels))]
- def set_role_party(self, role, party_id):
- self.role = role
- self.party_id = party_id
- for br in self.bin_results:
- br.set_role_party(role, party_id)
- def put_col_results(self, col_name, col_results: BinColResults, label_idx=0):
- self.bin_results[label_idx].put_col_results(col_name, col_results)
- def summary(self, split_points=None):
- if not self.is_multi_class:
- return {"result": self.bin_results[0].summary(split_points)}
- return {label: self.bin_results[label_idx].summary(split_points) for
- label_idx, label in enumerate(self.labels)}
- def put_col_split_points(self, col_name, split_points, label_idx=None):
- if label_idx is None:
- for br in self.bin_results:
- br.put_col_split_points(col_name, split_points)
- else:
- self.bin_results[label_idx].put_col_split_points(col_name, split_points)
- def put_optimal_metric_array(self, col_name, metric_array, label_idx=None):
- if label_idx is None:
- for br in self.bin_results:
- br.put_optimal_metric_array(col_name, metric_array)
- else:
- self.bin_results[label_idx].put_optimal_metric_array(col_name, metric_array)
- def generated_pb_list(self, split_points=None):
- res = []
- for br in self.bin_results:
- res.append(br.generated_pb(split_points))
- return res
- @staticmethod
- def reconstruct(result_pb, labels=None):
- if not isinstance(result_pb, list):
- result_pb = [result_pb]
- if labels is None:
- if len(result_pb) <= 1:
- labels = [0, 1]
- else:
- labels = list(range(len(result_pb)))
- result = MultiClassBinResult(labels)
- for idx, pb in enumerate(result_pb):
- result.bin_results[idx].reconstruct(pb)
- return result
- def update_anonymous(self, anonymous_header_dict):
- for idx in range(len(self.bin_results)):
- self.bin_results[idx].update_anonymous(anonymous_header_dict)
- @property
- def all_split_points(self):
- return self.bin_results[0].all_split_points
|