123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import functools
- from federatedml.feature.binning.quantile_binning import QuantileBinning
- from federatedml.param.feature_binning_param import FeatureBinningParam
- from federatedml.statistic import data_overview
- from federatedml.util import consts, LOGGER
- class QuantileBinningTool(QuantileBinning):
- """
- Use for quantile binning data directly.
- """
- def __init__(self, bin_nums=consts.G_BIN_NUM, param_obj: FeatureBinningParam = None,
- abnormal_list=None, allow_duplicate=False):
- if param_obj is None:
- param_obj = FeatureBinningParam(bin_num=bin_nums)
- super().__init__(params=param_obj, abnormal_list=abnormal_list, allow_duplicate=allow_duplicate)
- self.has_fit = False
- def fit_split_points(self, data_instances):
- res = super(QuantileBinningTool, self).fit_split_points(data_instances)
- self.has_fit = True
- return res
- def fit_summary(self, data_instances, is_sparse=None):
- if is_sparse is None:
- is_sparse = data_overview.is_sparse_data(data_instances)
- LOGGER.debug(f"is_sparse: {is_sparse}")
- f = functools.partial(self.feature_summary,
- params=self.params,
- abnormal_list=self.abnormal_list,
- cols_dict=self.bin_inner_param.bin_cols_map,
- header=self.header,
- is_sparse=is_sparse)
- summary_dict_table = data_instances.mapReducePartitions(f, self.copy_merge)
- # summary_dict = dict(summary_dict.collect())
- if is_sparse:
- total_count = data_instances.count()
- summary_dict_table = summary_dict_table.mapValues(lambda x: x.set_total_count(total_count))
- return summary_dict_table
- def get_quantile_point(self, quantile):
- """
- Return the specific quantile point value
- Parameters
- ----------
- quantile : float, 0 <= quantile <= 1
- Specify which column(s) need to apply statistic.
- Returns
- -------
- return a dict of result quantile points.
- eg.
- quantile_point = {"x1": 3, "x2": 5... }
- """
- if not self.has_fit:
- raise RuntimeError("Quantile Binning Tool's split points should be fit before calling"
- " get quantile points")
- f = functools.partial(self._get_split_points,
- allow_duplicate=self.allow_duplicate,
- percentile_rate=[quantile])
- quantile_points = dict(self.summary_dict.mapValues(f).collect())
- quantile_points = {k: v[0] for k, v in quantile_points.items()}
- return quantile_points
- def get_median(self):
- return self.get_quantile_point(0.5)
|