12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import unittest
- import numpy as np
- from fate_arch.session import computing_session as session
- session.init("123")
- from federatedml.feature.binning.bucket_binning import BucketBinning
- from federatedml.feature.instance import Instance
- from federatedml.param.feature_binning_param import FeatureBinningParam
- from federatedml.feature.binning.iv_calculator import IvCalculator
- class TestBucketBinning(unittest.TestCase):
- def setUp(self):
- # eggroll.init("123")
- self.data_num = 1000
- self.feature_num = 200
- self.bin_num = 10
- final_result = []
- numpy_array = []
- for i in range(self.data_num):
- if 100 < i < 500:
- continue
- tmp = i * np.ones(self.feature_num)
- inst = Instance(inst_id=i, features=tmp, label=i % 2)
- tmp_pair = (str(i), inst)
- final_result.append(tmp_pair)
- numpy_array.append(tmp)
- table = session.parallelize(final_result,
- include_key=True,
- partition=10)
- header = ['x' + str(i) for i in range(self.feature_num)]
- anonymous_header = ["guest_9999_x" + str(i) for i in range(self.feature_num)]
- self.table = table
- self.table.schema = {'header': header,
- "anonymous_header": anonymous_header}
- self.numpy_table = np.array(numpy_array)
- self.cols = [1, 2]
- def test_bucket_binning(self):
- bin_param = FeatureBinningParam(bin_num=self.bin_num, bin_indexes=self.cols)
- bucket_bin = BucketBinning(bin_param)
- split_points = bucket_bin.fit_split_points(self.table)
- split_point = list(split_points.values())[0]
- for kth, s_p in enumerate(split_point):
- expect_s_p = (self.data_num - 1) / self.bin_num * (kth + 1)
- self.assertEqual(s_p, expect_s_p)
- iv_calculator = IvCalculator(0.5,
- "guest",
- 9999)
- iv_res = iv_calculator.cal_local_iv(self.table, split_points=split_points,
- bin_cols_map={"x1": 1, "x2": 2})
- # for col_name, iv_attr in bucket_bin.bin_results.all_cols_results.items():
- for col_name, iv_attr in iv_res.bin_results[0].all_cols_results.items():
- # print('col_name: {}, iv: {}, woe_array: {}'.format(col_name, iv_attr.iv, iv_attr.woe_array))
- assert abs(iv_attr.iv - 0.00364386529386804) < 1e-6
- def tearDown(self):
- # self.table.destroy()
- session.stop()
- if __name__ == '__main__':
- unittest.main()
|