123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- #
- import unittest
- import uuid
- import numpy as np
- from fate_arch.session import computing_session as session
- from fate_arch.session import Session
- from federatedml.feature.binning.quantile_binning import QuantileBinning
- from federatedml.feature.binning.iv_calculator import IvCalculator
- from federatedml.param.feature_binning_param import FeatureBinningParam
- from federatedml.feature.instance import Instance
- from federatedml.feature.sparse_vector import SparseVector
- from federatedml.util import consts
- bin_num = 10
- class TestIvCalculator(unittest.TestCase):
- def setUp(self):
- self.job_id = str(uuid.uuid1())
- # session = Session.create(0, 0).init_computing("abc").computing
- session.init(self.job_id)
- def test_iv_calculator(self):
- bin_obj = self._bin_obj_generator()
- small_table = self.gen_data(10000, 50, 2)
- split_points = bin_obj.fit_split_points(small_table)
- iv_calculator = IvCalculator(adjustment_factor=0.5, role="guest", party_id=9999)
- ivs = iv_calculator.cal_local_iv(small_table, split_points)
- print(f"iv result: {ivs.summary()}")
- # def test_sparse_data(self):
- # feature_num = 50
- # bin_obj = self._bin_obj_generator()
- # small_table = self.gen_data(10000, feature_num, 2, is_sparse=True)
- # split_points = bin_obj.fit_split_points(small_table)
- # expect_split_points = list((range(1, bin_num)))
- # expect_split_points = [float(x) for x in expect_split_points]
- #
- # for feature_name, s_ps in split_points.items():
- # if int(feature_name) >= feature_num:
- # continue
- # s_ps = s_ps.tolist()
- # self.assertListEqual(s_ps, expect_split_points)
- #
- # def test_abnormal(self):
- # abnormal_list = [3, 4]
- # bin_obj = self._bin_obj_generator(abnormal_list=abnormal_list, this_bin_num=bin_num - len(abnormal_list))
- # small_table = self.gen_data(10000, 50, 2)
- # split_points = bin_obj.fit_split_points(small_table)
- # expect_split_points = list((range(1, bin_num)))
- # expect_split_points = [float(x) for x in expect_split_points if x not in abnormal_list]
- #
- # for _, s_ps in split_points.items():
- # s_ps = s_ps.tolist()
- # self.assertListEqual(s_ps, expect_split_points)
- #
- def _bin_obj_generator(self, abnormal_list: list = None, this_bin_num=bin_num):
- bin_param = FeatureBinningParam(method='quantile', compress_thres=consts.DEFAULT_COMPRESS_THRESHOLD,
- head_size=consts.DEFAULT_HEAD_SIZE,
- error=consts.DEFAULT_RELATIVE_ERROR,
- bin_indexes=-1,
- bin_num=this_bin_num)
- bin_obj = QuantileBinning(bin_param, abnormal_list=abnormal_list)
- return bin_obj
- def gen_data(self, data_num, feature_num, partition, is_sparse=False, use_random=False):
- data = []
- shift_iter = 0
- header = [str(i) for i in range(feature_num)]
- anonymous_header = ["guest_9999_x" + str(i) for i in range(feature_num)]
- for data_key in range(data_num):
- value = data_key % bin_num
- if value == 0:
- if shift_iter % bin_num == 0:
- value = bin_num - 1
- shift_iter += 1
- if not is_sparse:
- if not use_random:
- features = value * np.ones(feature_num)
- else:
- features = np.random.random(feature_num)
- inst = Instance(inst_id=data_key, features=features, label=data_key % 2)
- else:
- if not use_random:
- features = value * np.ones(feature_num)
- else:
- features = np.random.random(feature_num)
- data_index = [x for x in range(feature_num)]
- sparse_inst = SparseVector(data_index, data=features, shape=10 * feature_num)
- inst = Instance(inst_id=data_key, features=sparse_inst, label=data_key % 2)
- header = [str(i) for i in range(feature_num * 10)]
- data.append((data_key, inst))
- result = session.parallelize(data, include_key=True, partition=partition)
- result.schema = {'header': header,
- "anonymous_header": anonymous_header}
- return result
- def tearDown(self):
- session.stop()
- if __name__ == '__main__':
- unittest.main()
|