12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import torch as t
- import numpy as np
- from federatedml.util import LOGGER
- from federatedml.nn.hetero.nn_component.torch_model import TorchNNModel
- class BottomModel(object):
- def __init__(self, optimizer, layer_config):
- self._model: TorchNNModel = TorchNNModel(nn_define=layer_config, optimizer_define=optimizer,
- loss_fn_define=None)
- self.do_backward_select_strategy = False
- self.x = []
- self.x_cached = []
- self.batch_size = None
- def set_backward_select_strategy(self):
- self.do_backward_select_strategy = True
- def set_batch(self, batch_size):
- self.batch_size = batch_size
- def train_mode(self, mode):
- self._model.train_mode(mode)
- def forward(self, x):
- LOGGER.debug("bottom model start to forward propagation")
- self.x = x
- if self.do_backward_select_strategy:
- if (not isinstance(x, np.ndarray) and not isinstance(x, t.Tensor)):
- raise ValueError(
- 'When using selective bp, data from dataset must be a ndarray or a torch tensor, but got {}'.format(
- type(x)))
- if self.do_backward_select_strategy:
- output_data = self._model.predict(x)
- else:
- output_data = self._model.forward(x)
- return output_data
- def backward(self, x, error, selective_ids):
- LOGGER.debug("bottom model start to backward propagation")
- if self.do_backward_select_strategy:
- if selective_ids:
- if len(self.x_cached) == 0:
- self.x_cached = self.x[selective_ids]
- else:
- self.x_cached = np.vstack(
- (self.x_cached, self.x[selective_ids]))
- if len(error) == 0:
- return
- x = self.x_cached[: self.batch_size]
- self.x_cached = self.x_cached[self.batch_size:]
- self._model.train((x, error))
- else:
- self._model.backward(error)
- LOGGER.debug('bottom model update parameters:')
- def predict(self, x):
- return self._model.predict(x)
- def export_model(self):
- return self._model.export_model()
- def restore_model(self, model_bytes):
- self._model = self._model.restore_model(model_bytes)
- def __repr__(self):
- return 'bottom model contains {}'.format(self._model.__repr__())
|