1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from collections.abc import Iterable
- import numpy as np
- from federatedml.statistic import statics
- from federatedml.util import LOGGER
- class Initializer(object):
- def zeros(self, data_shape, fit_intercept, data_instances):
- """
- If fit intercept, use the following formula to initialize b can get a faster converge rate
- b = log(P(1)/P(0))
- """
- inits = np.zeros(data_shape)
- if fit_intercept and data_instances is not None:
- static_obj = statics.MultivariateStatisticalSummary(data_instances, cols_index=-1)
- label_historgram = static_obj.get_label_histogram()
- LOGGER.debug("label_histogram is : {}".format(label_historgram))
- one_count = label_historgram.get(1)
- zero_count = label_historgram.get(0, 0) + label_historgram.get(-1, 0)
- init_intercept = np.log((one_count / zero_count))
- inits[-1] = init_intercept
- return inits
- def random_normal(self, data_shape):
- if isinstance(data_shape, Iterable):
- inits = np.random.randn(*data_shape)
- else:
- inits = np.random.randn(data_shape)
- return inits
- def random_uniform(self, data_shape):
- if isinstance(data_shape, Iterable):
- inits = np.random.rand(*data_shape)
- else:
- inits = np.random.rand(data_shape)
- return inits
- def constant(self, data_shape, const):
- inits = np.ones(data_shape) * const
- return inits
- def ones(self, data_shape):
- inits = np.ones(data_shape)
- return inits
- def init_model(self, model_shape, init_params, data_instance=None):
- init_method = init_params.init_method
- fit_intercept = init_params.fit_intercept
- random_seed = init_params.random_seed
- np.random.seed(random_seed)
- if fit_intercept:
- if isinstance(model_shape, int):
- model_shape += 1
- else:
- new_shape = []
- for ds in model_shape:
- new_shape.append(ds + 1)
- model_shape = tuple(new_shape)
- if init_method == 'random_normal':
- w = self.random_normal(model_shape)
- elif init_method == 'random_uniform':
- w = self.random_uniform(model_shape)
- elif init_method == 'ones':
- w = self.ones(model_shape)
- elif init_method == 'zeros':
- w = self.zeros(model_shape, fit_intercept, data_instance)
- elif init_method == 'const':
- init_const = init_params.init_const
- w = self.constant(model_shape, const=init_const)
- else:
- raise NotImplementedError("Initial method cannot be recognized: {}".format(init_method))
- # LOGGER.debug("Inited model is :{}".format(w))
- return w
|