123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from federatedml.param.base_param import BaseParam, deprecated_param
- from federatedml.param.encrypt_param import EncryptParam
- from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
- from federatedml.param.cross_validation_param import CrossValidationParam
- from federatedml.param.predict_param import PredictParam
- from federatedml.param.callback_param import CallbackParam
- from federatedml.util import consts, LOGGER
- import copy
- import collections
- hetero_deprecated_param_list = ["early_stopping_rounds", "validation_freqs", "metrics", "use_first_metric_only"]
- homo_deprecated_param_list = ["validation_freqs", "metrics"]
- class ObjectiveParam(BaseParam):
- """
- Define objective parameters that used in federated ml.
- Parameters
- ----------
- objective : {None, 'cross_entropy', 'lse', 'lae', 'log_cosh', 'tweedie', 'fair', 'huber'}
- None in host's config, should be str in guest'config.
- when task_type is classification, only support 'cross_entropy',
- other 6 types support in regression task
- params : None or list
- should be non empty list when objective is 'tweedie','fair','huber',
- first element of list shoulf be a float-number large than 0.0 when objective is 'fair', 'huber',
- first element of list should be a float-number in [1.0, 2.0) when objective is 'tweedie'
- """
- def __init__(self, objective='cross_entropy', params=None):
- self.objective = objective
- self.params = params
- def check(self, task_type=None):
- if self.objective is None:
- return True
- descr = "objective param's"
- LOGGER.debug('check objective {}'.format(self.objective))
- if task_type not in [consts.CLASSIFICATION, consts.REGRESSION]:
- self.objective = self.check_and_change_lower(self.objective,
- ["cross_entropy", "lse", "lae", "huber", "fair",
- "log_cosh", "tweedie"],
- descr)
- if task_type == consts.CLASSIFICATION:
- if self.objective != "cross_entropy":
- raise ValueError("objective param's objective {} not supported".format(self.objective))
- elif task_type == consts.REGRESSION:
- self.objective = self.check_and_change_lower(self.objective,
- ["lse", "lae", "huber", "fair", "log_cosh", "tweedie"],
- descr)
- params = self.params
- if self.objective in ["huber", "fair", "tweedie"]:
- if type(params).__name__ != 'list' or len(params) < 1:
- raise ValueError(
- "objective param's params {} not supported, should be non-empty list".format(params))
- if type(params[0]).__name__ not in ["float", "int", "long"]:
- raise ValueError("objective param's params[0] {} not supported".format(self.params[0]))
- if self.objective == 'tweedie':
- if params[0] < 1 or params[0] >= 2:
- raise ValueError("in tweedie regression, objective params[0] should betweend [1, 2)")
- if self.objective == 'fair' or 'huber':
- if params[0] <= 0.0:
- raise ValueError("in {} regression, objective params[0] should greater than 0.0".format(
- self.objective))
- return True
- class DecisionTreeParam(BaseParam):
- """
- Define decision tree parameters that used in federated ml.
- Parameters
- ----------
- criterion_method : {"xgboost"}, default: "xgboost"
- the criterion function to use
- criterion_params: list or dict
- should be non empty and elements are float-numbers,
- if a list is offered, the first one is l2 regularization value, and the second one is
- l1 regularization value.
- if a dict is offered, make sure it contains key 'l1', and 'l2'.
- l1, l2 regularization values are non-negative floats.
- default: [0.1, 0] or {'l1':0, 'l2':0,1}
- max_depth: positive integer
- the max depth of a decision tree, default: 3
- min_sample_split: int
- least quantity of nodes to split, default: 2
- min_impurity_split: float
- least gain of a single split need to reach, default: 1e-3
- min_child_weight: float
- sum of hessian needed in child nodes. default is 0
- min_leaf_node: int
- when samples no more than min_leaf_node, it becomes a leave, default: 1
- max_split_nodes: positive integer
- we will use no more than max_split_nodes to
- parallel finding their splits in a batch, for memory consideration. default is 65536
- feature_importance_type: {'split', 'gain'}
- if is 'split', feature_importances calculate by feature split times,
- if is 'gain', feature_importances calculate by feature split gain.
- default: 'split'
- Due to the safety concern, we adjust training strategy of Hetero-SBT in FATE-1.8,
- When running Hetero-SBT, this parameter is now abandoned.
- In Hetero-SBT of FATE-1.8, guest side will compute split, gain of local features,
- and receive anonymous feature importance results from hosts. Hosts will compute split
- importance of local features.
- use_missing: bool, accepted True, False only, default: False
- use missing value in training process or not.
- zero_as_missing: bool
- regard 0 as missing value or not,
- will be use only if use_missing=True, default: False
- deterministic: bool
- ensure stability when computing histogram. Set this to true to ensure stable result when using
- same data and same parameter. But it may slow down computation.
- """
- def __init__(self, criterion_method="xgboost", criterion_params=[0.1, 0], max_depth=3,
- min_sample_split=2, min_impurity_split=1e-3, min_leaf_node=1,
- max_split_nodes=consts.MAX_SPLIT_NODES, feature_importance_type='split',
- n_iter_no_change=True, tol=0.001, min_child_weight=0,
- use_missing=False, zero_as_missing=False, deterministic=False):
- super(DecisionTreeParam, self).__init__()
- self.criterion_method = criterion_method
- self.criterion_params = criterion_params
- self.max_depth = max_depth
- self.min_sample_split = min_sample_split
- self.min_impurity_split = min_impurity_split
- self.min_leaf_node = min_leaf_node
- self.min_child_weight = min_child_weight
- self.max_split_nodes = max_split_nodes
- self.feature_importance_type = feature_importance_type
- self.n_iter_no_change = n_iter_no_change
- self.tol = tol
- self.use_missing = use_missing
- self.zero_as_missing = zero_as_missing
- self.deterministic = deterministic
- def check(self):
- descr = "decision tree param"
- self.criterion_method = self.check_and_change_lower(self.criterion_method,
- ["xgboost"],
- descr)
- if len(self.criterion_params) == 0:
- raise ValueError("decisition tree param's criterio_params should be non empty")
- if isinstance(self.criterion_params, list):
- assert len(self.criterion_params) == 2, 'length of criterion_param should be 2: l1, l2 regularization ' \
- 'values are needed'
- self.check_nonnegative_number(self.criterion_params[0], 'l2 reg value')
- self.check_nonnegative_number(self.criterion_params[1], 'l1 reg value')
- elif isinstance(self.criterion_params, dict):
- assert 'l1' in self.criterion_params and 'l2' in self.criterion_params, 'l1 and l2 keys are needed in ' \
- 'criterion_params dict'
- self.criterion_params = [self.criterion_params['l2'], self.criterion_params['l1']]
- else:
- raise ValueError('criterion_params should be a dict or a list contains l1, l2 reg value')
- if type(self.max_depth).__name__ not in ["int", "long"]:
- raise ValueError("decision tree param's max_depth {} not supported, should be integer".format(
- self.max_depth))
- if self.max_depth < 1:
- raise ValueError("decision tree param's max_depth should be positive integer, no less than 1")
- if type(self.min_sample_split).__name__ not in ["int", "long"]:
- raise ValueError("decision tree param's min_sample_split {} not supported, should be integer".format(
- self.min_sample_split))
- if type(self.min_impurity_split).__name__ not in ["int", "long", "float"]:
- raise ValueError("decision tree param's min_impurity_split {} not supported, should be numeric".format(
- self.min_impurity_split))
- if type(self.min_leaf_node).__name__ not in ["int", "long"]:
- raise ValueError("decision tree param's min_leaf_node {} not supported, should be integer".format(
- self.min_leaf_node))
- if type(self.max_split_nodes).__name__ not in ["int", "long"] or self.max_split_nodes < 1:
- raise ValueError("decision tree param's max_split_nodes {} not supported, " +
- "should be positive integer between 1 and {}".format(self.max_split_nodes,
- consts.MAX_SPLIT_NODES))
- if type(self.n_iter_no_change).__name__ != "bool":
- raise ValueError("decision tree param's n_iter_no_change {} not supported, should be bool type".format(
- self.n_iter_no_change))
- if type(self.tol).__name__ not in ["float", "int", "long"]:
- raise ValueError("decision tree param's tol {} not supported, should be numeric".format(self.tol))
- self.feature_importance_type = self.check_and_change_lower(self.feature_importance_type,
- ["split", "gain"],
- descr)
- self.check_nonnegative_number(self.min_child_weight, 'min_child_weight')
- self.check_boolean(self.deterministic, 'deterministic')
- return True
- class BoostingParam(BaseParam):
- """
- Basic parameter for Boosting Algorithms
- Parameters
- ----------
- task_type : {'classification', 'regression'}, default: 'classification'
- task type
- objective_param : ObjectiveParam Object, default: ObjectiveParam()
- objective param
- learning_rate : float, int or long
- the learning rate of secure boost. default: 0.3
- num_trees : int or float
- the max number of boosting round. default: 5
- subsample_feature_rate : float
- a float-number in [0, 1], default: 1.0
- n_iter_no_change : bool,
- when True and residual error less than tol, tree building process will stop. default: True
- bin_num: positive integer greater than 1
- bin number use in quantile. default: 32
- validation_freqs: None or positive integer or container object in python
- Do validation in training process or Not.
- if equals None, will not do validation in train process;
- if equals positive integer, will validate data every validation_freqs epochs passes;
- if container object in python, will validate data if epochs belong to this container.
- e.g. validation_freqs = [10, 15], will validate data when epoch equals to 10 and 15.
- Default: None
- """
- def __init__(self, task_type=consts.CLASSIFICATION,
- objective_param=ObjectiveParam(),
- learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
- tol=0.0001, bin_num=32,
- predict_param=PredictParam(), cv_param=CrossValidationParam(),
- validation_freqs=None, metrics=None, random_seed=100,
- binning_error=consts.DEFAULT_RELATIVE_ERROR):
- super(BoostingParam, self).__init__()
- self.task_type = task_type
- self.objective_param = copy.deepcopy(objective_param)
- self.learning_rate = learning_rate
- self.num_trees = num_trees
- self.subsample_feature_rate = subsample_feature_rate
- self.n_iter_no_change = n_iter_no_change
- self.tol = tol
- self.bin_num = bin_num
- self.predict_param = copy.deepcopy(predict_param)
- self.cv_param = copy.deepcopy(cv_param)
- self.validation_freqs = validation_freqs
- self.metrics = metrics
- self.random_seed = random_seed
- self.binning_error = binning_error
- def check(self):
- descr = "boosting tree param's"
- if self.task_type not in [consts.CLASSIFICATION, consts.REGRESSION]:
- raise ValueError("boosting_core tree param's task_type {} not supported, should be {} or {}".format(
- self.task_type, consts.CLASSIFICATION, consts.REGRESSION))
- self.objective_param.check(self.task_type)
- if type(self.learning_rate).__name__ not in ["float", "int", "long"]:
- raise ValueError("boosting_core tree param's learning_rate {} not supported, should be numeric".format(
- self.learning_rate))
- if type(self.subsample_feature_rate).__name__ not in ["float", "int", "long"] or \
- self.subsample_feature_rate < 0 or self.subsample_feature_rate > 1:
- raise ValueError(
- "boosting_core tree param's subsample_feature_rate should be a numeric number between 0 and 1")
- if type(self.n_iter_no_change).__name__ != "bool":
- raise ValueError("boosting_core tree param's n_iter_no_change {} not supported, should be bool type".format(
- self.n_iter_no_change))
- if type(self.tol).__name__ not in ["float", "int", "long"]:
- raise ValueError("boosting_core tree param's tol {} not supported, should be numeric".format(self.tol))
- if type(self.bin_num).__name__ not in ["int", "long"] or self.bin_num < 2:
- raise ValueError(
- "boosting_core tree param's bin_num {} not supported, should be positive integer greater than 1".format(
- self.bin_num))
- if self.validation_freqs is None:
- pass
- elif isinstance(self.validation_freqs, int):
- if self.validation_freqs < 1:
- raise ValueError("validation_freqs should be larger than 0 when it's integer")
- elif not isinstance(self.validation_freqs, collections.Container):
- raise ValueError("validation_freqs should be None or positive integer or container")
- if self.metrics is not None and not isinstance(self.metrics, list):
- raise ValueError("metrics should be a list")
- if self.random_seed is not None:
- assert isinstance(self.random_seed, int) and self.random_seed >= 0, 'random seed must be an integer >= 0'
- self.check_decimal_float(self.binning_error, descr)
- return True
- class HeteroBoostingParam(BoostingParam):
- """
- Parameters
- ----------
- encrypt_param : EncodeParam Object
- encrypt method use in secure boost, default: EncryptParam()
- encrypted_mode_calculator_param: EncryptedModeCalculatorParam object
- the calculation mode use in secureboost,
- default: EncryptedModeCalculatorParam()
- """
- def __init__(self, task_type=consts.CLASSIFICATION,
- objective_param=ObjectiveParam(),
- learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
- tol=0.0001, encrypt_param=EncryptParam(),
- bin_num=32,
- encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
- predict_param=PredictParam(), cv_param=CrossValidationParam(),
- validation_freqs=None, early_stopping_rounds=None, metrics=None, use_first_metric_only=False,
- random_seed=100, binning_error=consts.DEFAULT_RELATIVE_ERROR):
- super(HeteroBoostingParam, self).__init__(task_type, objective_param, learning_rate, num_trees,
- subsample_feature_rate, n_iter_no_change, tol, bin_num,
- predict_param, cv_param, validation_freqs, metrics=metrics,
- random_seed=random_seed,
- binning_error=binning_error)
- self.encrypt_param = copy.deepcopy(encrypt_param)
- self.encrypted_mode_calculator_param = copy.deepcopy(encrypted_mode_calculator_param)
- self.early_stopping_rounds = early_stopping_rounds
- self.use_first_metric_only = use_first_metric_only
- def check(self):
- super(HeteroBoostingParam, self).check()
- self.encrypted_mode_calculator_param.check()
- self.encrypt_param.check()
- if self.early_stopping_rounds is None:
- pass
- elif isinstance(self.early_stopping_rounds, int):
- if self.early_stopping_rounds < 1:
- raise ValueError("early stopping rounds should be larger than 0 when it's integer")
- if self.validation_freqs is None:
- raise ValueError("validation freqs must be set when early stopping is enabled")
- if not isinstance(self.use_first_metric_only, bool):
- raise ValueError("use_first_metric_only should be a boolean")
- return True
- @deprecated_param(*hetero_deprecated_param_list)
- class HeteroSecureBoostParam(HeteroBoostingParam):
- """
- Define boosting tree parameters that used in federated ml.
- Parameters
- ----------
- task_type : {'classification', 'regression'}, default: 'classification'
- task type
- tree_param : DecisionTreeParam Object, default: DecisionTreeParam()
- tree param
- objective_param : ObjectiveParam Object, default: ObjectiveParam()
- objective param
- learning_rate : float, int or long
- the learning rate of secure boost. default: 0.3
- num_trees : int or float
- the max number of trees to build. default: 5
- subsample_feature_rate : float
- a float-number in [0, 1], default: 1.0
- random_seed: int
- seed that controls all random functions
- n_iter_no_change : bool,
- when True and residual error less than tol, tree building process will stop. default: True
- encrypt_param : EncodeParam Object
- encrypt method use in secure boost, default: EncryptParam(), this parameter
- is only for hetero-secureboost
- bin_num: positive integer greater than 1
- bin number use in quantile. default: 32
- encrypted_mode_calculator_param: EncryptedModeCalculatorParam object
- the calculation mode use in secureboost, default: EncryptedModeCalculatorParam(), only for hetero-secureboost
- use_missing: bool
- use missing value in training process or not. default: False
- zero_as_missing: bool
- regard 0 as missing value or not, will be use only if use_missing=True, default: False
- validation_freqs: None or positive integer or container object in python
- Do validation in training process or Not.
- if equals None, will not do validation in train process;
- if equals positive integer, will validate data every validation_freqs epochs passes;
- if container object in python, will validate data if epochs belong to this container.
- e.g. validation_freqs = [10, 15], will validate data when epoch equals to 10 and 15.
- Default: None
- The default value is None, 1 is suggested. You can set it to a number larger than 1 in order to
- speed up training by skipping validation rounds. When it is larger than 1, a number which is
- divisible by "num_trees" is recommended, otherwise, you will miss the validation scores
- of last training iteration.
- early_stopping_rounds: integer larger than 0
- will stop training if one metric of one validation data
- doesn’t improve in last early_stopping_round rounds,
- need to set validation freqs and will check early_stopping every at every validation epoch,
- metrics: list, default: []
- Specify which metrics to be used when performing evaluation during training process.
- If set as empty, default metrics will be used. For regression tasks, default metrics are
- ['root_mean_squared_error', 'mean_absolute_error'], For binary-classificatiin tasks, default metrics
- are ['auc', 'ks']. For multi-classification tasks, default metrics are ['accuracy', 'precision', 'recall']
- use_first_metric_only: bool
- use only the first metric for early stopping
- complete_secure: bool
- if use complete_secure, when use complete secure, build first tree using only guest features
- sparse_optimization:
- this parameter is abandoned in FATE-1.7.1
- run_goss: bool
- activate Gradient-based One-Side Sampling, which selects large gradient and small
- gradient samples using top_rate and other_rate.
- top_rate: float, the retain ratio of large gradient data, used when run_goss is True
- other_rate: float, the retain ratio of small gradient data, used when run_goss is True
- cipher_compress_error: This param is now abandoned
- cipher_compress: bool, default is True, use cipher compressing to reduce computation cost and transfer cost
- boosting_strategy:str
- std: standard sbt setting
- mix: alternate using guest/host features to build trees. For example, the first 'tree_num_per_party' trees
- use guest features,
- the second k trees use host features, and so on
- layered: only support 2 party, when running layered mode, first 'host_depth' layer will use host features,
- and then next 'guest_depth' will only use guest features
- work_mode: str
- This parameter has the same function as boosting_strategy, but is deprecated
- tree_num_per_party: int, every party will alternate build 'tree_num_per_party' trees until reach max tree num, this
- param is valid when boosting_strategy is mix
- guest_depth: int, guest will build last guest_depth of a decision tree using guest features, is valid when boosting_strategy
- is layered
- host_depth: int, host will build first host_depth of a decision tree using host features, is valid when work boosting_strategy
- layered
- multi_mode: str, decide which mode to use when running multi-classification task:
- single_output standard gbdt multi-classification strategy
- multi_output every leaf give a multi-dimension predict, using multi_mode can save time
- by learning a model with less trees.
- EINI_inference: bool
- default is False, this option changes the inference algorithm used in predict tasks.
- a secure prediction method that hides decision path to enhance security in the inference
- step. This method is insprired by EINI inference algorithm.
- EINI_random_mask: bool
- default is False
- multiply predict result by a random float number to confuse original predict result. This operation further
- enhances the security of naive EINI algorithm.
- EINI_complexity_check: bool
- default is False
- check the complexity of tree models when running EINI algorithms. Complexity models are easy to hide their
- decision path, while simple tree models are not, therefore if a tree model is too simple, it is not allowed
- to run EINI predict algorithms.
- """
- def __init__(self, tree_param: DecisionTreeParam = DecisionTreeParam(), task_type=consts.CLASSIFICATION,
- objective_param=ObjectiveParam(),
- learning_rate=0.3, num_trees=5, subsample_feature_rate=1.0, n_iter_no_change=True,
- tol=0.0001, encrypt_param=EncryptParam(),
- bin_num=32,
- encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
- predict_param=PredictParam(), cv_param=CrossValidationParam(),
- validation_freqs=None, early_stopping_rounds=None, use_missing=False, zero_as_missing=False,
- complete_secure=False, metrics=None, use_first_metric_only=False, random_seed=100,
- binning_error=consts.DEFAULT_RELATIVE_ERROR,
- sparse_optimization=False, run_goss=False, top_rate=0.2, other_rate=0.1,
- cipher_compress_error=None, cipher_compress=True, new_ver=True, boosting_strategy=consts.STD_TREE,
- work_mode=None, tree_num_per_party=1, guest_depth=2, host_depth=3, callback_param=CallbackParam(),
- multi_mode=consts.SINGLE_OUTPUT, EINI_inference=False, EINI_random_mask=False,
- EINI_complexity_check=False):
- super(HeteroSecureBoostParam, self).__init__(task_type, objective_param, learning_rate, num_trees,
- subsample_feature_rate, n_iter_no_change, tol, encrypt_param,
- bin_num, encrypted_mode_calculator_param, predict_param, cv_param,
- validation_freqs, early_stopping_rounds, metrics=metrics,
- use_first_metric_only=use_first_metric_only,
- random_seed=random_seed,
- binning_error=binning_error)
- self.tree_param = copy.deepcopy(tree_param)
- self.zero_as_missing = zero_as_missing
- self.use_missing = use_missing
- self.complete_secure = complete_secure
- self.sparse_optimization = sparse_optimization
- self.run_goss = run_goss
- self.top_rate = top_rate
- self.other_rate = other_rate
- self.cipher_compress_error = cipher_compress_error
- self.cipher_compress = cipher_compress
- self.new_ver = new_ver
- self.EINI_inference = EINI_inference
- self.EINI_random_mask = EINI_random_mask
- self.EINI_complexity_check = EINI_complexity_check
- self.boosting_strategy = boosting_strategy
- self.work_mode = work_mode
- self.tree_num_per_party = tree_num_per_party
- self.guest_depth = guest_depth
- self.host_depth = host_depth
- self.callback_param = copy.deepcopy(callback_param)
- self.multi_mode = multi_mode
- def check(self):
- super(HeteroSecureBoostParam, self).check()
- self.tree_param.check()
- if not isinstance(self.use_missing, bool):
- raise ValueError('use missing should be bool type')
- if not isinstance(self.zero_as_missing, bool):
- raise ValueError('zero as missing should be bool type')
- self.check_boolean(self.complete_secure, 'complete_secure')
- self.check_boolean(self.run_goss, 'run goss')
- self.check_decimal_float(self.top_rate, 'top rate')
- self.check_decimal_float(self.other_rate, 'other rate')
- self.check_positive_number(self.other_rate, 'other_rate')
- self.check_positive_number(self.top_rate, 'top_rate')
- self.check_boolean(self.new_ver, 'code version switcher')
- self.check_boolean(self.cipher_compress, 'cipher compress')
- self.check_boolean(self.EINI_inference, 'eini inference')
- self.check_boolean(self.EINI_random_mask, 'eini random mask')
- self.check_boolean(self.EINI_complexity_check, 'eini complexity check')
- if self.EINI_inference and self.EINI_random_mask:
- LOGGER.warning('To protect the inference decision path, notice that current setting will multiply'
- ' predict result by a random number, hence SecureBoost will return confused predict scores'
- ' that is not the same as the original predict scores')
- if self.work_mode == consts.MIX_TREE and self.EINI_inference:
- LOGGER.warning('Mix tree mode does not support EINI, use default predict setting')
- if self.work_mode is not None:
- self.boosting_strategy = self.work_mode
- if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
- raise ValueError('unsupported multi-classification mode')
- if self.multi_mode == consts.MULTI_OUTPUT:
- if self.boosting_strategy != consts.STD_TREE:
- raise ValueError('MO trees only works when boosting strategy is std tree')
- if not self.cipher_compress:
- raise ValueError('Mo trees only works when cipher compress is enabled')
- if self.boosting_strategy not in [consts.STD_TREE, consts.LAYERED_TREE, consts.MIX_TREE]:
- raise ValueError('unknown sbt boosting strategy{}'.format(self.boosting_strategy))
- for p in ["early_stopping_rounds", "validation_freqs", "metrics",
- "use_first_metric_only"]:
- # if self._warn_to_deprecate_param(p, "", ""):
- if self._deprecated_params_set.get(p):
- if "callback_param" in self.get_user_feeded():
- raise ValueError(f"{p} and callback param should not be set simultaneously,"
- f"{self._deprecated_params_set}, {self.get_user_feeded()}")
- else:
- self.callback_param.callbacks = ["PerformanceEvaluate"]
- break
- descr = "boosting_param's"
- if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
- self.callback_param.validation_freqs = self.validation_freqs
- if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
- self.callback_param.early_stopping_rounds = self.early_stopping_rounds
- if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
- self.callback_param.metrics = self.metrics
- if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
- self.callback_param.use_first_metric_only = self.use_first_metric_only
- if self.top_rate + self.other_rate >= 1:
- raise ValueError('sum of top rate and other rate should be smaller than 1')
- return True
- @deprecated_param(*homo_deprecated_param_list)
- class HomoSecureBoostParam(BoostingParam):
- """
- Parameters
- ----------
- backend: {'distributed', 'memory'}
- decides which backend to use when computing histograms for homo-sbt
- """
- def __init__(self, tree_param: DecisionTreeParam = DecisionTreeParam(), task_type=consts.CLASSIFICATION,
- objective_param=ObjectiveParam(),
- learning_rate=0.3, num_trees=5, subsample_feature_rate=1, n_iter_no_change=True,
- tol=0.0001, bin_num=32, predict_param=PredictParam(), cv_param=CrossValidationParam(),
- validation_freqs=None, use_missing=False, zero_as_missing=False, random_seed=100,
- binning_error=consts.DEFAULT_RELATIVE_ERROR, backend=consts.DISTRIBUTED_BACKEND,
- callback_param=CallbackParam(), multi_mode=consts.SINGLE_OUTPUT):
- super(HomoSecureBoostParam, self).__init__(task_type=task_type,
- objective_param=objective_param,
- learning_rate=learning_rate,
- num_trees=num_trees,
- subsample_feature_rate=subsample_feature_rate,
- n_iter_no_change=n_iter_no_change,
- tol=tol,
- bin_num=bin_num,
- predict_param=predict_param,
- cv_param=cv_param,
- validation_freqs=validation_freqs,
- random_seed=random_seed,
- binning_error=binning_error
- )
- self.use_missing = use_missing
- self.zero_as_missing = zero_as_missing
- self.tree_param = copy.deepcopy(tree_param)
- self.backend = backend
- self.callback_param = copy.deepcopy(callback_param)
- self.multi_mode = multi_mode
- def check(self):
- super(HomoSecureBoostParam, self).check()
- self.tree_param.check()
- if not isinstance(self.use_missing, bool):
- raise ValueError('use missing should be bool type')
- if not isinstance(self.zero_as_missing, bool):
- raise ValueError('zero as missing should be bool type')
- if self.backend not in [consts.MEMORY_BACKEND, consts.DISTRIBUTED_BACKEND]:
- raise ValueError('unsupported backend')
- if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
- raise ValueError('unsupported multi-classification mode')
- for p in ["validation_freqs", "metrics"]:
- # if self._warn_to_deprecate_param(p, "", ""):
- if self._deprecated_params_set.get(p):
- if "callback_param" in self.get_user_feeded():
- raise ValueError(f"{p} and callback param should not be set simultaneously,"
- f"{self._deprecated_params_set}, {self.get_user_feeded()}")
- else:
- self.callback_param.callbacks = ["PerformanceEvaluate"]
- break
- descr = "boosting_param's"
- if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
- self.callback_param.validation_freqs = self.validation_freqs
- if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
- self.callback_param.metrics = self.metrics
- if self.multi_mode not in [consts.SINGLE_OUTPUT, consts.MULTI_OUTPUT]:
- raise ValueError('unsupported multi-classification mode')
- if self.multi_mode == consts.MULTI_OUTPUT:
- if self.task_type == consts.REGRESSION:
- raise ValueError('regression tasks not support multi-output trees')
- return True
|