123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import copy
- from federatedml.param.base_param import BaseParam, deprecated_param
- from federatedml.param.callback_param import CallbackParam
- from federatedml.param.encrypt_param import EncryptParam
- from federatedml.param.cross_validation_param import CrossValidationParam
- from federatedml.param.init_model_param import InitParam
- from federatedml.param.stepwise_param import StepwiseParam
- from federatedml.util import consts
- @deprecated_param("validation_freqs", "metrics", "early_stopping_rounds", "use_first_metric_only")
- class LinearModelParam(BaseParam):
- """
- Parameters used for GLM.
- Parameters
- ----------
- penalty : {'L2' or 'L1'}
- Penalty method used in LinR. Please note that, when using encrypted version in HeteroLinR,
- 'L1' is not supported.
- tol : float, default: 1e-4
- The tolerance of convergence
- alpha : float, default: 1.0
- Regularization strength coefficient.
- optimizer : {'sgd', 'rmsprop', 'adam', 'sqn', 'adagrad', 'nesterov_momentum_sgd'}
- Optimize method
- batch_size : int, default: -1
- Batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy.
- learning_rate : float, default: 0.01
- Learning rate
- max_iter : int, default: 20
- The maximum iteration for training.
- init_param: InitParam object, default: default InitParam object
- Init param method object.
- early_stop : {'diff', 'abs', 'weight_dff'}
- Method used to judge convergence.
- a) diff: Use difference of loss between two iterations to judge whether converge.
- b) abs: Use the absolute value of loss to judge whether converge. i.e. if loss < tol, it is converged.
- c) weight_diff: Use difference between weights of two consecutive iterations
- encrypt_param: EncryptParam object, default: default EncryptParam object
- encrypt param
- cv_param: CrossValidationParam object, default: default CrossValidationParam object
- cv param
- decay: int or float, default: 1
- Decay rate for learning rate. learning rate will follow the following decay schedule.
- lr = lr0/(1+decay*t) if decay_sqrt is False. If decay_sqrt is True, lr = lr0 / sqrt(1+decay*t)
- where t is the iter number.
- decay_sqrt: Bool, default: True
- lr = lr0/(1+decay*t) if decay_sqrt is False, otherwise, lr = lr0 / sqrt(1+decay*t)
- validation_freqs: int, list, tuple, set, or None
- validation frequency during training, required when using early stopping.
- The default value is None, 1 is suggested. You can set it to a number larger than 1 in order to speed up training by skipping validation rounds.
- When it is larger than 1, a number which is divisible by "max_iter" is recommended, otherwise, you will miss the validation scores of the last training iteration.
- early_stopping_rounds: int, default: None
- If positive number specified, at every specified training rounds, program checks for early stopping criteria.
- Validation_freqs must also be set when using early stopping.
- metrics: list or None, default: None
- Specify which metrics to be used when performing evaluation during training process. If metrics have not improved at early_stopping rounds, trianing stops before convergence.
- If set as empty, default metrics will be used. For regression tasks, default metrics are ['root_mean_squared_error', 'mean_absolute_error']
- use_first_metric_only: bool, default: False
- Indicate whether to use the first metric in `metrics` as the only criterion for early stopping judgement.
- floating_point_precision: None or integer
- if not None, use floating_point_precision-bit to speed up calculation,
- e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
- the result by 2**floating_point_precision in the end.
- callback_param: CallbackParam object
- callback param
- """
- def __init__(self, penalty='L2',
- tol=1e-4, alpha=1.0, optimizer='sgd',
- batch_size=-1, learning_rate=0.01, init_param=InitParam(),
- max_iter=100, early_stop='diff',
- encrypt_param=EncryptParam(),
- cv_param=CrossValidationParam(), decay=1, decay_sqrt=True, validation_freqs=None,
- early_stopping_rounds=None, stepwise_param=StepwiseParam(), metrics=None, use_first_metric_only=False,
- floating_point_precision=23, callback_param=CallbackParam()):
- super(LinearModelParam, self).__init__()
- self.penalty = penalty
- self.tol = tol
- self.alpha = alpha
- self.optimizer = optimizer
- self.batch_size = batch_size
- self.learning_rate = learning_rate
- self.init_param = copy.deepcopy(init_param)
- self.max_iter = max_iter
- self.early_stop = early_stop
- self.encrypt_param = encrypt_param
- self.cv_param = copy.deepcopy(cv_param)
- self.decay = decay
- self.decay_sqrt = decay_sqrt
- self.validation_freqs = validation_freqs
- self.early_stopping_rounds = early_stopping_rounds
- self.stepwise_param = copy.deepcopy(stepwise_param)
- self.metrics = metrics or []
- self.use_first_metric_only = use_first_metric_only
- self.floating_point_precision = floating_point_precision
- self.callback_param = copy.deepcopy(callback_param)
- def check(self):
- descr = "linear model param's "
- if self.penalty is None:
- self.penalty = 'NONE'
- elif type(self.penalty).__name__ != "str":
- raise ValueError(
- descr + "penalty {} not supported, should be str type".format(self.penalty))
- self.penalty = self.penalty.upper()
- if self.penalty not in [consts.L1_PENALTY, consts.L2_PENALTY, consts.NONE.upper()]:
- raise ValueError(
- "penalty {} not supported, penalty should be 'L1', 'L2' or 'NONE'".format(self.penalty))
- if type(self.tol).__name__ not in ["int", "float"]:
- raise ValueError(
- descr + "tol {} not supported, should be float type".format(self.tol))
- if type(self.alpha).__name__ not in ["int", "float"]:
- raise ValueError(
- descr + "alpha {} not supported, should be float type".format(self.alpha))
- if type(self.optimizer).__name__ != "str":
- raise ValueError(
- descr + "optimizer {} not supported, should be str type".format(self.optimizer))
- else:
- self.optimizer = self.optimizer.lower()
- if self.optimizer not in ['sgd', 'rmsprop', 'adam', 'adagrad', 'sqn', 'nesterov_momentum_sgd']:
- raise ValueError(
- descr + "optimizer not supported, optimizer should be"
- " 'sgd', 'rmsprop', 'adam', 'sqn', 'adagrad', or 'nesterov_momentum_sgd'")
- if type(self.batch_size).__name__ not in ["int", "long"]:
- raise ValueError(
- descr + "batch_size {} not supported, should be int type".format(self.batch_size))
- if self.batch_size != -1:
- if type(self.batch_size).__name__ not in ["int", "long"] \
- or self.batch_size < consts.MIN_BATCH_SIZE:
- raise ValueError(descr + " {} not supported, should be larger than {} or "
- "-1 represent for all data".format(self.batch_size, consts.MIN_BATCH_SIZE))
- if type(self.learning_rate).__name__ not in ["int", "float"]:
- raise ValueError(
- descr + "learning_rate {} not supported, should be float type".format(
- self.learning_rate))
- self.init_param.check()
- if type(self.max_iter).__name__ != "int":
- raise ValueError(
- descr + "max_iter {} not supported, should be int type".format(self.max_iter))
- elif self.max_iter <= 0:
- raise ValueError(
- descr + "max_iter must be greater or equal to 1")
- if type(self.early_stop).__name__ != "str":
- raise ValueError(
- descr + "early_stop {} not supported, should be str type".format(
- self.early_stop))
- else:
- self.early_stop = self.early_stop.lower()
- if self.early_stop not in ['diff', 'abs', 'weight_diff']:
- raise ValueError(
- descr + "early_stop not supported, early_stop should be 'weight_diff', 'diff' or 'abs'")
- self.encrypt_param.check()
- if type(self.decay).__name__ not in ["int", "float"]:
- raise ValueError(
- descr + "decay {} not supported, should be 'int' or 'float'".format(self.decay)
- )
- if type(self.decay_sqrt).__name__ not in ["bool"]:
- raise ValueError(
- descr + "decay_sqrt {} not supported, should be 'bool'".format(self.decay)
- )
- self.stepwise_param.check()
- for p in ["early_stopping_rounds", "validation_freqs", "metrics",
- "use_first_metric_only"]:
- if self._warn_to_deprecate_param(p, "", ""):
- if "callback_param" in self.get_user_feeded():
- raise ValueError(f"{p} and callback param should not be set simultaneously")
- else:
- self.callback_param.callbacks = ["PerformanceEvaluate"]
- break
- if self._warn_to_deprecate_param("validation_freqs", descr, "callback_param's 'validation_freqs'"):
- self.callback_param.validation_freqs = self.validation_freqs
- if self._warn_to_deprecate_param("early_stopping_rounds", descr, "callback_param's 'early_stopping_rounds'"):
- self.callback_param.early_stopping_rounds = self.early_stopping_rounds
- if self._warn_to_deprecate_param("metrics", descr, "callback_param's 'metrics'"):
- self.callback_param.metrics = self.metrics
- if self._warn_to_deprecate_param("use_first_metric_only", descr, "callback_param's 'use_first_metric_only'"):
- self.callback_param.use_first_metric_only = self.use_first_metric_only
- if self.floating_point_precision is not None and \
- (not isinstance(self.floating_point_precision, int) or
- self.floating_point_precision < 0 or self.floating_point_precision > 64):
- raise ValueError("floating point precision should be null or a integer between 0 and 64")
- self.callback_param.check()
- return True
|