from peft import ( set_peft_model_state_dict, ) import torch import os from torch.nn.functional import normalize # 联邦平均算法 def FedAvg(model, selected_clients_set, output_dir, local_dataset_len_dict, epoch): # 对各个客户端的本地数据集大小进行归一化,作为权重的基础 # 这里将每个客户端的数据集大小转换为张量,并按照第0维进行 L1 归一化 weights_array = normalize( torch.tensor([local_dataset_len_dict[client_id] for client_id in selected_clients_set], dtype=torch.float32), p=1, dim=0) # 遍历选定的客户端集合 for k, client_id in enumerate(selected_clients_set): # 对每个选定的客户端,加载其训练得到的模型权重 # 构造每个客户端权重的文件路径,并加载权重 single_output_dir = os.path.join(output_dir, str(epoch), "local_output_{}".format(client_id), "pytorch_model.bin") single_weights = torch.load(single_output_dir) # 如果是第一个客户端,则将其权重乘以对应的归一化权重 # 否则,将其权重乘以归一化权重后累加到总权重上 if k == 0: weighted_single_weights = {key: single_weights[key] * (weights_array[k]) for key in single_weights.keys()} else: weighted_single_weights = {key: weighted_single_weights[key] + single_weights[key] * (weights_array[k]) for key in single_weights.keys()} # 使用计算得到的加权平均权重,设置全局模型的状态 set_peft_model_state_dict(model, weighted_single_weights, "default") return model