123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- import os
- import fire
- import gradio as gr
- import torch
- import transformers
- from peft import (
- PeftModel,
- LoraConfig,
- get_peft_model,
- get_peft_model_state_dict,
- prepare_model_for_int8_training,
- set_peft_model_state_dict,
- )
- from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer
- from utils.callbacks import Iteratorize, Stream
- from utils.prompter import Prompter
- # 检查设备是否可用,决定使用CPU还是GPU,或者使用mps(如果可用)
- if torch.cuda.is_available():
- device = "cuda"
- else:
- device = "cpu"
- try:
- if torch.backends.mps.is_available():
- device = "mps"
- except:
- pass
- def main(
- load_8bit: bool = False,
- base_model: str = "",
- lora_weights_path: str = "",
- lora_config_path: str= "", # provide only the file path, excluding the file name 'adapter_config.json'
- prompt_template: str = "", # The prompt template to use, will default to alpaca.
- server_name: str = "0.0.0.0",
- share_gradio: bool = False,
- ):
- # 从命令行参数或环境变量获取基础模型名称
- base_model = base_model or os.environ.get("BASE_MODEL", "")
- assert (
- base_model
- ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
- prompter = Prompter(prompt_template)
- tokenizer = LlamaTokenizer.from_pretrained(base_model)
- if not lora_weights_path.endswith(".bin"):
- if device == "cuda":
- model = LlamaForCausalLM.from_pretrained(
- base_model,
- load_in_8bit=load_8bit,
- torch_dtype=torch.float16,
- device_map="auto",
- )
- model = PeftModel.from_pretrained(
- model,
- lora_weights_path,
- torch_dtype=torch.float16,
- )
- elif device == "mps":
- model = LlamaForCausalLM.from_pretrained(
- base_model,
- device_map={"": device},
- torch_dtype=torch.float16,
- )
- model = PeftModel.from_pretrained(
- model,
- lora_weights_path,
- device_map={"": device},
- torch_dtype=torch.float16,
- )
- else:
- model = LlamaForCausalLM.from_pretrained(
- base_model, device_map={"": device}, low_cpu_mem_usage=True
- )
- model = PeftModel.from_pretrained(
- model,
- lora_weights_path,
- device_map={"": device},
- )
- else:
- model = LlamaForCausalLM.from_pretrained(
- base_model,
- load_in_8bit=True,
- torch_dtype=torch.float16,
- device_map="auto",
- )
- model = prepare_model_for_int8_training(model)
- config = LoraConfig.from_pretrained(lora_config_path)
- lora_weights = torch.load(lora_weights_path)
- model = PeftModel(model, config)
- set_peft_model_state_dict(model,lora_weights,"default")
- del lora_weights
- # unwind broken decapoda-research config
- # 进行模型配置修正
- model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
- model.config.bos_token_id = 1
- model.config.eos_token_id = 2
- # 为某些用户修复错误
- if not load_8bit:
- model.half() # seems to fix bugs for some users.
- # 设置模型为评估模式
- model.eval()
- # 定义评估函数,将输入的文本转换为模型可理解的形式,然后生成响应
- def evaluate(
- instruction,
- input=None,
- temperature=0.1,
- top_p=0.75,
- top_k=40,
- num_beams=4,
- max_new_tokens=128,
- stream_output=True,
- **kwargs,
- ):
- # 生成提示,并将其转换为模型所需的输入格式
- prompt = prompter.generate_prompt(instruction, input)
- inputs = tokenizer(prompt, return_tensors="pt")
- input_ids = inputs["input_ids"].to(device)
- # 配置生成参数
- generation_config = GenerationConfig(
- temperature=temperature,
- top_p=top_p,
- top_k=top_k,
- num_beams=num_beams,
- do_sample=True,
- **kwargs,
- )
- generate_params = {
- "input_ids": input_ids,
- "generation_config": generation_config,
- "return_dict_in_generate": True,
- "output_scores": True,
- "max_new_tokens": max_new_tokens,
- }
- # 如果stream_output为True,则以流的方式生成和返回响应
- if stream_output:
- # Stream the reply 1 token at a time.
- # This is based on the trick of using 'stopping_criteria' to create an iterator,
- # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
- def generate_with_callback(callback=None, **kwargs):
- kwargs.setdefault(
- "stopping_criteria", transformers.StoppingCriteriaList()
- )
- kwargs["stopping_criteria"].append(
- Stream(callback_func=callback)
- )
- with torch.no_grad():
- model.generate(**kwargs)
- def generate_with_streaming(**kwargs):
- return Iteratorize(
- generate_with_callback, kwargs, callback=None
- )
- # 使用迭代器方式生成响应
- with generate_with_streaming(**generate_params) as generator:
- for output in generator:
- # new_tokens = len(output) - len(input_ids[0])
- decoded_output = tokenizer.decode(output)
- if output[-1] in [tokenizer.eos_token_id]:
- break
- yield prompter.get_response(decoded_output)
- return # early return for stream_output
- # Without streaming
- with torch.no_grad():
- generation_output = model.generate(
- input_ids=input_ids,
- generation_config=generation_config,
- return_dict_in_generate=True,
- output_scores=True,
- max_new_tokens=max_new_tokens,
- )
- s = generation_output.sequences[0]
- output = tokenizer.decode(s)
- yield prompter.get_response(output)
- sherpherd_UI=gr.Interface(
- fn=evaluate,
- inputs=[
- gr.components.Textbox(
- lines=2,
- label="Instruction",
- placeholder="Tell me about alpacas.",
- ),
- gr.components.Textbox(lines=2, label="Input", placeholder="none"),
- gr.components.Slider(
- minimum=0, maximum=1, value=0.01, label="Temperature"
- ),
- gr.components.Slider(
- minimum=0, maximum=1, value=0.03, label="Top p"
- ),
- gr.components.Slider(
- minimum=0, maximum=100, step=1, value=1, label="Top k"
- ),
- gr.components.Slider(
- minimum=1, maximum=4, step=1, value=1, label="Beams"
- ),
- gr.components.Slider(
- minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
- ),
- gr.components.Checkbox(label="Stream output"),
- ],
- outputs=[
- gr.components.Textbox(lines=5, label="Output")
- ],
- title="FederatedGPT-shepherd",
- description="Shepherd is a LLM that has been fine-tuned in a federated manner ",
- ).queue()
- sherpherd_UI.launch(server_name=server_name, share=share_gradio)
- if __name__ == "__main__":
- fire.Fire(main)
|