from flcore.clients.clientapfl import clientAPFL from flcore.servers.serverbase import Server import logging import os class APFL(Server): def __init__(self, args, times): super().__init__(args, times) self.message_hp = f"{args.algorithm}, lr:{args.local_learning_rate:.5f}, alpha:{args.alpha:.2f}" clientObj = clientAPFL self.message_hp_dash = self.message_hp.replace(", ", "-") self.hist_result_fn = os.path.join(args.hist_dir, f"{self.actual_dataset}-{self.message_hp_dash}-{args.goal}-{self.times}.h5") self.set_clients(args, clientObj) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") def train(self): for i in range(self.global_rounds): self.selected_clients = self.select_clients() self.send_models() print(f"\n------------- Round number: [{i+1:3d}/{self.global_rounds}]-------------") print(f"==> Training for {len(self.selected_clients)} clients...", flush=True) for client in self.selected_clients: client.train() self.receive_models() self.aggregate_parameters() if i % self.eval_gap == 0: print("==> Evaluating personalized models...", flush=True) self.send_models(mode="all") self.evaluate() if i == 80: self.check_early_stopping() print(f"\n==> Best mean personalized accuracy: {self.best_mean_test_acc*100:.2f}%", flush=True) self.save_results(fn=self.hist_result_fn) message_res = f"\ttest_acc:{self.best_mean_test_acc:.6f}" logging.info(self.message_hp + message_res)