import time from flcore.clients.clientavg import clientAVG from flcore.servers.serverbase import Server import os import logging import torch class FedAvg(Server): def __init__(self, args, times): super().__init__(args, times) self.message_hp = f"{args.algorithm}, lr:{args.local_learning_rate:.5f}" clientObj = clientAVG self.message_hp_dash = self.message_hp.replace(", ", "-") self.hist_result_fn = os.path.join(args.hist_dir, f"{self.actual_dataset}-{self.message_hp_dash}-{args.goal}-{self.times}.h5") self.last_ckpt_fn = os.path.join(self.ckpt_dir, f"FedAvg-cifar10-100clt.pt") self.set_clients(args, clientObj) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") self.Budget = [] def train(self): for i in range(self.global_rounds): self.selected_clients = self.select_clients() self.send_models() print(f"\n------------- Round number: [{i+1:3d}/{self.global_rounds}]-------------") print(f"==> Training for {len(self.selected_clients)} clients...", flush=True) for client in self.selected_clients: client.train() self.receive_models() self.aggregate_parameters() if i%self.eval_gap == 0: print("==> Evaluating global models...", flush=True) self.send_models(mode="all") # self.evaluate(mode="global") self.evaluate() if i == 80: self.check_early_stopping() print(f"==> Best mean accuracy: {self.best_mean_test_acc*100:.2f}%", flush=True) self.save_results(fn=self.hist_result_fn) message_res = f"\ttest_acc:{self.best_mean_test_acc:.6f}" logging.info(self.message_hp + message_res) # state = { # "global_model": self.global_model.cpu().state_dict(), # "clients_test_accs": self.clients_test_accs[-1] # } # self.save_global_model(model_path=self.last_ckpt_fn, state=state)