from flcore.clients.clientper import clientPer from flcore.servers.serverbase import Server import copy import os import logging class FedPer(Server): def __init__(self, args, times): super().__init__(args, times) self.message_hp = f"{args.algorithm}, lr:{args.local_learning_rate:.5f}" clientObj = clientPer self.message_hp_dash = self.message_hp.replace(", ", "-") self.hist_result_fn = os.path.join(args.hist_dir, f"{self.actual_dataset}-{self.message_hp_dash}-{args.goal}-{self.times}.h5") self.set_clients(args, clientObj) print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") print("Finished creating server and clients.") # self.load_model() def train(self): for i in range(self.global_rounds): self.selected_clients = self.select_clients() self.send_models() print(f"\n------------- Round number: [{i+1:3d}/{self.global_rounds}]-------------") print(f"==> Training for {len(self.selected_clients)} clients...", flush=True) for client in self.selected_clients: client.train() self.receive_models() self.aggregate_parameters() if i%self.eval_gap == 0: print("==> Evaluating personalized models...", flush=True) self.send_models(mode="all") self.evaluate(self.global_model) print(f"==> Best mean personalized accuracy: {self.best_mean_test_acc*100:.2f}%", flush=True) self.save_results(fn=self.hist_result_fn) message_res = f"\ttest_acc:{self.best_mean_test_acc:.6f}" logging.info(self.message_hp + message_res) def receive_models(self): assert (len(self.selected_clients) > 0) self.uploaded_weights = [] tot_samples = 0 self.uploaded_ids = [] self.uploaded_models = [] for client in self.selected_clients: self.uploaded_weights.append(client.train_samples) tot_samples += client.train_samples self.uploaded_ids.append(client.id) self.uploaded_models.append(client.model.base) for i, w in enumerate(self.uploaded_weights): self.uploaded_weights[i] = w / tot_samples def prepare_global_model(self): temp_model = copy.deepcopy(self.global_model) # base self.global_model = copy.deepcopy(self.clients[0].model) for p_t, p_g in zip(temp_model.parameters(), self.global_model.base.parameters()): p_g.data = p_t.data.clone() for p in self.global_model.predictor.parameters(): p.data.zero_() for c in self.clients: for p_g, p_c in zip(self.global_model.predictor.parameters(), c.model.predictor.parameters()): p_g.data += p_c.data * c.train_samples return