# The following commands provides an example on how to coduct training with different FL/pFL algorithms. # These commands assumes the dataset (in this case, cifar10 with 25 clients) has already been generated. # These commands train the model for 2 global rounds (-gr flag). # In each round 25% of the clients will be selected (-jr flag). # Each selected client will train the model for 2 epochs or local steps (-ls flag) # Local python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo Local # FedAvg python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedAvg # FedDyn python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedDyn -al 0.1 # pFedMe python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo pFedMe -bt 1.0 -lrp 0.01 # FedFomo python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedFomo # APFL python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo APFL -al 0.5 # FedRep python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedRep -pls 1 # LGFedAvg python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo LGFedAvg # FedPer python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedPer # Per-FedAvg python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo PerAvg -al 0.005 -bt 0.005 # FedRoD python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedRoD # FedBABU python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo FedBABU -al 0.001 -bt 0.01 # PGFed python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo PGFed -mu 0.1 -lam 0.01 -bt 0.0 # PGFedMo python main.py -data cifar10 -nc 25 -jr 0.25 -gr 2 -ls 2 -algo PGFed -mu 0.1 -lam 0.01 -bt 0.5