import copy import torch import torch.nn as nn import numpy as np from flcore.clients.clientbase import Client class clientLGFedAvg(Client): def __init__(self, args, id, train_samples, test_samples, **kwargs): super().__init__(args, id, train_samples, test_samples, **kwargs) self.criterion = nn.CrossEntropyLoss() self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.9) def train(self): trainloader = self.load_train_data() self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.9) # self.model.to(self.device) self.model.train() max_local_steps = self.local_steps for step in range(max_local_steps): for i, (x, y) in enumerate(trainloader): if type(x) == type([]): x[0] = x[0].to(self.device) else: x = x.to(self.device) y = y.to(self.device) for param in self.model.base.parameters(): param.requires_grad = True for param in self.model.predictor.parameters(): param.requires_grad = False self.optimizer.zero_grad() output = self.model(x) loss = self.criterion(output, y) loss.backward() self.optimizer.step() for param in self.model.base.parameters(): param.requires_grad = False for param in self.model.predictor.parameters(): param.requires_grad = True self.optimizer.zero_grad() output = self.model(x) loss = self.criterion(output, y) loss.backward() self.optimizer.step() # self.model.cpu() def set_parameters(self, model): for new_param, old_param in zip(model.parameters(), self.model.predictor.parameters()): old_param.data = new_param.data.clone()