123456789101112131415161718192021222324252627282930313233343536373839404142 |
- import copy
- import os
- import logging
- import torch
- from flcore.clients.clientperavg import clientPerAvg
- from flcore.servers.serverbase import Server
- class PerAvg(Server):
- def __init__(self, args, times):
- super().__init__(args, times)
- self.message_hp = f"{args.algorithm}, alpha:{args.alpha:.5f}, beta:{args.beta:.5f}"
- clientObj = clientPerAvg
- self.message_hp_dash = self.message_hp.replace(", ", "-")
- self.hist_result_fn = os.path.join(args.hist_dir, f"{self.actual_dataset}-{self.message_hp_dash}-{args.goal}-{self.times}.h5")
- self.set_clients(args, clientObj)
- print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
- print("Finished creating server and clients.")
- def train(self):
- for i in range(self.global_rounds):
- self.selected_clients = self.select_clients()
- # send all parameter for clients
- self.send_models()
- print(f"\n------------- Round number: [{i+1:3d}/{self.global_rounds}]-------------")
- print(f"==> Training for {len(self.selected_clients)} clients...", flush=True)
- for client in self.selected_clients:
- client.train()
- self.receive_models()
- self.aggregate_parameters()
- if i%self.eval_gap == 0:
- print("==> Evaluating personalized models...", flush=True)
- self.send_models(mode="all")
- self.evaluate(self.global_model)
- print(f"==> Best mean personalized accuracy: {self.best_mean_test_acc*100:.2f}%", flush=True)
- self.save_results(fn=self.hist_result_fn)
- message_res = f"\ttest_acc:{self.best_mean_test_acc:.6f}"
- logging.info(self.message_hp + message_res)
|