12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- import torch
- import torch.nn as nn
- import numpy as np
- from sklearn.preprocessing import label_binarize
- from sklearn import metrics
- import copy
- from flcore.clients.clientbase import Client
- class clientRep(Client):
- def __init__(self, args, id, train_samples, test_samples, **kwargs):
- super().__init__(args, id, train_samples, test_samples, **kwargs)
-
- self.criterion = nn.CrossEntropyLoss()
- self.optimizer = torch.optim.SGD(self.model.base.parameters(), lr=self.learning_rate)
- self.poptimizer = torch.optim.SGD(self.model.predictor.parameters(), lr=self.learning_rate)
- self.plocal_steps = args.plocal_steps
- def train(self):
- trainloader = self.load_train_data()
- # self.model.to(self.device)
- self.model.train()
- for param in self.model.base.parameters():
- param.requires_grad = False
- for param in self.model.predictor.parameters():
- param.requires_grad = True
- for step in range(self.plocal_steps):
- for i, (x, y) in enumerate(trainloader):
- if type(x) == type([]):
- x[0] = x[0].to(self.device)
- else:
- x = x.to(self.device)
- y = y.to(self.device)
- self.poptimizer.zero_grad()
- output = self.model(x)
- loss = self.criterion(output, y)
- loss.backward()
- self.poptimizer.step()
-
- max_local_steps = self.local_steps
- for param in self.model.base.parameters():
- param.requires_grad = True
- for param in self.model.predictor.parameters():
- param.requires_grad = False
- for step in range(max_local_steps):
- for i, (x, y) in enumerate(trainloader):
- if type(x) == type([]):
- x[0] = x[0].to(self.device)
- else:
- x = x.to(self.device)
- y = y.to(self.device)
- self.optimizer.zero_grad()
- output = self.model(x)
- loss = self.criterion(output, y)
- loss.backward()
- self.optimizer.step()
- # self.model.cpu()
-
- def set_parameters(self, base):
- for new_param, old_param in zip(base.parameters(), self.model.base.parameters()):
- old_param.data = new_param.data.clone()
|