{ "cells": [ { "cell_type": "code", "execution_count": 3, "id": "929632d2", "metadata": {}, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn import metrics\n", "from sklearn.preprocessing import LabelEncoder,OneHotEncoder\n", "from keras.models import Model\n", "from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding\n", "from keras.layers import Convolution1D,BatchNormalization,concatenate,Flatten\n", "from keras.optimizers import RMSprop\n", "from keras.preprocessing.text import Tokenizer\n", "from keras.preprocessing import sequence\n", "from keras.callbacks import EarlyStopping\n", "\n", "%config InlineBackend.figure_format = 'retina'\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 4, "id": "f99da117", "metadata": {}, "outputs": [], "source": [ "import sys\n", "from collections import Counter\n", "\n", "import numpy as np\n", "import tensorflow.keras as kr\n", "\n", "if sys.version_info[0] > 2:\n", " is_py3 = True\n", "else:\n", " reload(sys)\n", " sys.setdefaultencoding(\"utf-8\")\n", " is_py3 = False\n", "\n", "\n", "def native_word(word, encoding='utf-8'):\n", " \"\"\"如果在python2下面使用python3训练的模型,可考虑调用此函数转化一下字符编码\"\"\"\n", " if not is_py3:\n", " return word.encode(encoding)\n", " else:\n", " return word\n", "\n", "\n", "def native_content(content):\n", " if not is_py3:\n", " return content.decode('utf-8')\n", " else:\n", " return content\n", "\n", "\n", "def open_file(filename, mode='r'):\n", " \"\"\"\n", " 常用文件操作,可在python2和python3间切换.\n", " mode: 'r' or 'w' for read or write\n", " \"\"\"\n", " if is_py3:\n", " return open(filename, mode, encoding='utf-8', errors='ignore')\n", " else:\n", " return open(filename, mode)\n", "\n", "\n", "def read_file(filename):\n", " \"\"\"读取文件数据\"\"\"\n", " contents, labels = [], []\n", " with open_file(filename) as f:\n", " for line in f:\n", " try:\n", " label, content = line.strip().split('\\t')\n", " if content:\n", " contents.append(list(native_content(content)))\n", " labels.append(native_content(label))\n", " except:\n", " pass\n", " return contents, labels\n", "\n", "\n", "def build_vocab(train_dir, vocab_dir, vocab_size=5000):\n", " \"\"\"根据训练集构建词汇表,存储\"\"\"\n", " data_train, _ = read_file(train_dir)\n", "\n", " all_data = []\n", " for content in data_train:\n", " all_data.extend(content)\n", "\n", " counter = Counter(all_data)\n", " count_pairs = counter.most_common(vocab_size - 1)\n", " words, _ = list(zip(*count_pairs))\n", " # 添加一个 来将所有文本pad为同一长度\n", " words = [''] + list(words)\n", " open_file(vocab_dir, mode='w').write('\\n'.join(words) + '\\n')\n", "\n", "\n", "def read_vocab(vocab_dir):\n", " \"\"\"读取词汇表\"\"\"\n", " with open_file(vocab_dir) as fp:\n", " # 如果是py2 则每个值都转化为unicode\n", " words = [native_content(_.strip()) for _ in fp.readlines()]\n", " word_to_id = dict(zip(words, range(len(words))))\n", " return words, word_to_id\n", "\n", "\n", "def read_category():\n", " \"\"\"读取分类目录,固定\"\"\"\n", " categories = ['体育', '财经', '房产', '家居', '教育', '科技', '时尚', '时政', '游戏', '娱乐']\n", "\n", " categories = [native_content(x) for x in categories]\n", "\n", " cat_to_id = dict(zip(categories, range(len(categories))))\n", "\n", " return categories, cat_to_id\n", "\n", "\n", "def to_words(content, words):\n", " \"\"\"将id表示的内容转换为文字\"\"\"\n", " return ''.join(words[x] for x in content)\n", "\n", "\n", "def process_file(filename, word_to_id, cat_to_id, max_length=600):\n", " \"\"\"将文件转换为id表示\"\"\"\n", " contents, labels = read_file(filename)\n", "\n", " data_id, label_id = [], []\n", " for i in range(len(contents)):\n", " data_id.append([word_to_id[x] for x in contents[i] if x in word_to_id])\n", " label_id.append(cat_to_id[labels[i]])\n", "\n", " # 使用keras提供的pad_sequences来将文本pad为固定长度\n", " x_pad = kr.preprocessing.sequence.pad_sequences(data_id, max_length)\n", " y_pad = kr.utils.to_categorical(label_id, num_classes=len(cat_to_id)) # 将标签转换为one-hot表示\n", "\n", " return x_pad, y_pad\n", "\n", "\n", "def batch_iter(x, y, batch_size=64):\n", " \"\"\"生成批次数据\"\"\"\n", " data_len = len(x)\n", " num_batch = int((data_len - 1) / batch_size) + 1\n", "\n", " indices = np.random.permutation(np.arange(data_len))\n", " x_shuffle = x[indices]\n", " y_shuffle = y[indices]\n", "\n", " for i in range(num_batch):\n", " start_id = i * batch_size\n", " end_id = min((i + 1) * batch_size, data_len)\n", " yield x_shuffle[start_id:end_id], y_shuffle[start_id:end_id]" ] }, { "cell_type": "code", "execution_count": 5, "id": "ef22fed8", "metadata": {}, "outputs": [], "source": [ "train_dir = 'cnews.train.txt'\n", "test_dir = 'cnews.test.txt'\n", "val_dir = 'cnews.val.txt'\n", "vocab_dir = 'cnews.vocab.txt'\n", "save_dir = 'checkpoints/textcnn'\n", "save_path = 'best_validation'" ] }, { "cell_type": "code", "execution_count": 6, "id": "b148a79e", "metadata": {}, "outputs": [], "source": [ "if not os.path.exists(vocab_dir): # 如果不存在词汇表,重建\n", " build_vocab(train_dir, vocab_dir, config.vocab_size)" ] }, { "cell_type": "code", "execution_count": 7, "id": "1926e74a", "metadata": {}, "outputs": [], "source": [ "# 创建数据类别映射、文本字典\n", "categories, cat_to_id = read_category()\n", "words, word_to_id = read_vocab(vocab_dir)\n", "vocab_size = len(words)" ] }, { "cell_type": "code", "execution_count": 73, "id": "b0973ad5", "metadata": {}, "outputs": [], "source": [ "seq_length = 600 # 序列长度\n", "x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, seq_length)\n", "x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, seq_length)" ] }, { "cell_type": "code", "execution_count": 74, "id": "75a5fccf", "metadata": {}, "outputs": [], "source": [ "#TextInception\n", "# main_input = Input(shape=(600,), dtype='float64')\n", "# embedder = Embedding(vocab_size + 1, 256, input_length = 600)\n", "# embed = embedder(main_input)\n", "# block1 = Convolution1D(128, 1, padding='same')(embed)\n", "# conv2_1 = Convolution1D(256, 1, padding='same')(embed)\n", "# bn2_1 = BatchNormalization()(conv2_1)\n", "# relu2_1 = Activation('relu')(bn2_1)\n", "# block2 = Convolution1D(128, 3, padding='same')(relu2_1)\n", "# inception = concatenate([block1, block2], axis=-1)\n", "# flat = Flatten()(inception)\n", "# fc = Dense(128)(flat)\n", "# drop = Dropout(0.5)(fc)\n", "# bn = BatchNormalization()(drop)\n", "# relu = Activation('relu')(bn)\n", "# main_output = Dense(10, activation='softmax')(relu)\n", "# model = Model(inputs = main_input, outputs = main_output)\n", "# model.compile(loss='categorical_crossentropy',\n", "# optimizer='adam',\n", "# metrics=['accuracy'])\n", "main_input = Input(shape=(600,), dtype='float64')\n", "embedder = Embedding(vocab_size + 1, 256, input_length = 600)\n", "embed = embedder(main_input)\n", "conv2_1 = Convolution1D(128, 1, padding='same')(embed)\n", "bn2_1 = BatchNormalization()(conv2_1)\n", "relu2_1 = Activation('relu')(bn2_1)\n", "conv2_2 = Convolution1D(128, 3, padding='same')(relu2_1)\n", "flat = Flatten()(conv2_2)\n", "fc = Dense(128)(flat)\n", "drop = Dropout(0.5)(fc)\n", "bn = BatchNormalization()(drop)\n", "relu = Activation('relu')(bn)\n", "main_output = Dense(10, activation='softmax')(relu)\n", "model = Model(inputs = main_input, outputs = main_output)\n", "model.compile(loss='categorical_crossentropy',\n", " optimizer='adam',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 75, "id": "a4051151", "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"model\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " input_1 (InputLayer) [(None, 600)] 0 \n", " \n", " embedding (Embedding) (None, 600, 256) 1280256 \n", " \n", " conv1d (Conv1D) (None, 600, 128) 32896 \n", " \n", " batch_normalization (BatchN (None, 600, 128) 512 \n", " ormalization) \n", " \n", " activation (Activation) (None, 600, 128) 0 \n", " \n", " conv1d_1 (Conv1D) (None, 600, 128) 49280 \n", " \n", " flatten (Flatten) (None, 76800) 0 \n", " \n", " dense (Dense) (None, 128) 9830528 \n", " \n", " dropout (Dropout) (None, 128) 0 \n", " \n", " batch_normalization_1 (Batc (None, 128) 512 \n", " hNormalization) \n", " \n", " activation_1 (Activation) (None, 128) 0 \n", " \n", " dense_1 (Dense) (None, 10) 1290 \n", " \n", "=================================================================\n", "Total params: 11,195,274\n", "Trainable params: 11,194,762\n", "Non-trainable params: 512\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 76, "id": "9e5fe150", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/3\n", "1563/1563 [==============================] - 139s 78ms/step - loss: 0.3613 - accuracy: 0.8956 - val_loss: 0.5181 - val_accuracy: 0.8556\n", "Epoch 2/3\n", "1563/1563 [==============================] - 30s 19ms/step - loss: 0.1331 - accuracy: 0.9614 - val_loss: 0.4725 - val_accuracy: 0.8848\n", "Epoch 3/3\n", "1563/1563 [==============================] - 32s 21ms/step - loss: 0.0902 - accuracy: 0.9723 - val_loss: 0.4052 - val_accuracy: 0.9034\n" ] } ], "source": [ "history = model.fit(x_train, y_train,\n", " batch_size=32,\n", " epochs=3,\n", " validation_data=(x_val, y_val))" ] }, { "cell_type": "code", "execution_count": 77, "id": "86c56dd6", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAOpCAYAAACpd7jUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXyU5b3///dMVrKTsIR9CwmQsW4IImtUUFQEQWBSEaSudaMt/fV7lC6cU1s9KljUastSt9YMi4osKm5II6KAgpAQCGFNAgQSluzr3L8/cjJNSMJMwkzW1/PxmEfv5L6u+/rcKSq8uRaTYRiGAAAAAAAAALQI5uYuAAAAAAAAAMB/ENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAAAAAANCCENgBAAAAAAAALQiBHQAAQAswa9YsmUwmx+d///d/m7skAAAANBOTYRhGcxcBAADQnuXl5SkyMlKFhYWO7w0ePFj79u1rxqoAAADQXJhhBwAA0MxWr15dI6yTpJSUFO3YsaOZKgIAAEBzIrADAABoZm+99ZbjukOHDnV+HwAAAO0HgR0AAEAzOnLkiBITEyVJJpNJL774ouNeQkKCSktLm6s0AAAANBMCOwAAgGb09ttvq2pL4bFjx+qhhx5S586dJUlnz57Vhg0bmrM8AAAANAMCOwAAgGZiGIbefvttx9f33nuvvL29ZbVaHd9r6LLYiooKrVq1SrNnz1ZMTIw6duwoHx8fRUREaPjw4Zo3b56++OILuXLu2J49e/Rf//VfGj58uCIjI+Xr66ugoCDFxMRo5syZWrFihS5cuFCr39GjRx2n3fbt29eluvv27evoc/ToUZfbHDp0SAsWLNDVV1+tzp07y2w266qrrqrVNyUlRS+99JKmTp2qmJgYBQcHy8fHR507d9bQoUP1y1/+slGHfDTm571r1y7He3Ts2FHFxcUujZWXl6egoCBH3z179jS4XgAA0DpwSiwAAEAzSUxM1JgxYyRJ/v7+ysrKUkhIiHbs2KFhw4ZJknx8fJSZmemYdefseQ888IBSU1Odtv1//+//6bnnnqvz3vnz5/XII49o1apVToO9rl276tSpUzW+d/ToUfXr10+S1KdPn3oDuOr69u2rY8eOSapcJlxX0Hdxm08//VTz5s2rFXhdeeWV2r17t+PrGTNmaPXq1U5rMJlMmjdvnl588UV5eXk5bX85P++hQ4fq+++/lyT985//1D333OP0GcuXL9eDDz4oSbruuuu0fft2p30AAEDr5N3cBQAAALRX1WfPTZ48WSEhIZIqw5hBgwZp//79Kisr07vvvqt58+Zd8lk2m02zZ89WWVmZ43vR0dG6+uqrFRoaqtzcXCUnJys5OVl2u73eWV0nTpzQjTfeqAMHDji+FxYWppEjR6pbt24qKyvT8ePH9f333ys3N9fl2WHutnr1av3mN7+RJHXv3l0jR45UaGioTpw4obNnz9Zoe/z4cUmSt7e3hgwZooEDByosLExeXl46ffq0duzYoczMTBmGob/85S8qKSnRa6+9dsnxL/fn/dBDD+nhhx+WJK1YscKlwG7FihWO6wceeMBpewAA0Hoxww4AAKAZFBUVKTIyUrm5uZKkDRs26Pbbb3fc//Of/6wFCxZIkq6++mr98MMP9T5r165duuGGGxyh0NVXX63XX39dw4cPr9X21KlT+uc//ym73e4IvKqUl5dr3Lhx2rp1q6TKE2tfeOEFPfTQQ/Lx8anRtrS0VJs2bdI//vEPffDBBzXuNcUMO29vb5nNZr366qt64IEHZDKZHO1KSkrk5+fn+Pqpp57SNddco1tuucURilZnGIY2bNig+++/X2fOnJFUOXtu1KhRddbqjp93fn6+unXrpvz8fJlMJqWlpal///71/nz27dun2NhYSVJgYKBOnjyp4ODgetsDAIDWjcAOAACgGbz77ruOWVWdO3fWiRMn5O39n8UPx44dU79+/RxLUvfs2aMrrriizmeNGjXKEbINHTpUmzdvVlBQUINrqr7k0sfHR1988YVGjx7d4Oc0RWAnub6U1FXfffedrr/+ekmVy2hXrlxZZzt3/bwfeughLVu2TJK0YMECPfPMM/W2nT9/vhYvXixJmjt3rv7xj380eDwAANB6cOgEAABAM6i+HDY+Pr5GWCdVBl1V+9td3L667777zhEemUwmvfXWW40KjyRp0aJFjutf/epXjQrrmsqwYcPcGtZJ0vDhwzV48GBJ0hdffFFnG3f+vKvCUUl68803VVFRUWe7srIyvfPOO46vWQ4LAEDbxx52AAAATSwzM1Off/654+t77723znazZ8/Wli1bJEn/+te/9L//+7+1DkP45JNPHNc33XSThgwZ0qiajh07pv379zu+fvzxxxv1nKZS/STdhkhNTdXOnTt16NAhXbhwQSUlJTUO1qg69TYnJ0fp6enq1atXjf7u+nlLlXsVXnXVVdq9e7cyMzO1adMm3XbbbbXarVu3zrFUd8iQIbrhhhsaPSYAAGgdCOwAAACaWNWeZpI0aNAgDR06tM52d999tx577DEVFxfr1KlTdQY63377reM6Li6u0TVVf87AgQPVs2fPRj+rKVx77bUNar9x40b97ne/065du1zuk52dXSuwc9fPu8pDDz2kRx99VFLloRJ1BXbVD5u4//77L3tMAADQ8rEkFgAAoIlVX95a3+w6SQoJCdHkyZPr7FclKyvLcX2pQwuccddzmkrnzp1dbrtw4ULdcccdDQrrJCkvL6/W99z9c7rnnnsUGBgoSVq/fr1jJl2VjIwMbdq0SZLk6+ur2bNnX/aYAACg5SOwAwAAaEI7duxQSkqKpMo90Jztw1Y90Fu3bp3Onz9f4371UKmxe6m58zlNpUOHDi61++yzz/Tf//3fjq9HjBihpUuXateuXcrOzlZxcbEMw3B8xo4d62hbNQuyOnf/nEJCQjRz5kxJlXvVvf322zXuv/nmm446Jk+erE6dOl32mAAAoOUjsAMAAGhC1WfJGYahvn37ymQy1fu54447HO2Li4trnVwaHBzsuM7Pz290Xe56TmPVFY65wwsvvOC4/tnPfqatW7fqwQcf1FVXXaWIiAj5+fnVaF/XrLrqPPFzqn74RPXlr4Zh6I033nB8zWETAAC0HwR2AAAATaS0tFQJCQmX9YyLl8V27drVcX3kyJFGP9ddz5EkHx8fx3V5eblLfaoOe3CniooKx6EdZrNZzz77rEwm0yX7HD9+/JL33flzqnL99dfrJz/5iSQpJSVF27ZtkyRt3rxZhw8fllR5avDNN9/slvEAAEDLR2AHAADQRDZs2KCzZ89Kkry9vTV8+HCXPtddd53jGdu2bVNqaqrj6+uvv95x/eWXXza6turPSU1NVUZGRqOfFRIS4rg+d+5cjVNY63L8+HHl5uY2erz6ZGdnq7S0VJLUpUsXdenS5ZLt9+3bp+zs7Eu2cdfP+2J1zbKrPttu7ty5Mpv5rTsAAO0F/9UHAABoItVnx02cOFHffvutS5/t27fLYrE4+lbf52zixImO6y+++MKxP15D9enTR4MHD3Z8/de//rVRz5Eql42Gh4dLkgoLC2sEjHVZtWpVo8e6lOoBV1FRkdP2r7/+utM27vp5X2zWrFmOfflWrlypjIwMvf/++5Iq3+NnP/uZW8YBAACtA4EdAABAEzhz5ow+/vhjx9ezZs1qUP/q7d955x3HrLVhw4Zp5MiRkir3PJs9e3aj91b71a9+5bhetGiREhMTG/UcSRo+fLjj+s0336y3XUZGhp599tlGj3MpERERCg0NlVS55LZqeWxdtm7d6lJg586fd3VhYWGaMWOGpMq98e6++24VFxdLkiZMmKBevXpd9hgAAKD1ILADAABoAu+++67KysokVc5AmzRpUoP6x8fHO/ZfO378uDZv3uy49/LLLzsOT9i5c6fGjBmj7777rs7nnDp1Si+++GKNwxiq3HfffbrhhhskVZ5Yeuutt+q1115z1F1daWmp1q9fr7vuuqvOcX760586rhcvXqz33nuvVptvv/1WY8eO1blz5+Tr61vfqzea2WzWbbfd5vj6vvvu0/bt22u1W7VqlW677TZVVFQoMDDQ6XPd9fO+WPVlsdWfx2ETAAC0PybD2aYiAAAAuGzXXHONdu3aJUmaM2fOJWed1Wfs2LH697//LUmaPXt2jSW2//rXv3TffffVOOQhJiZGV199tUJDQ3XhwgXt27dPSUlJstvtmjdvnv7yl7/UGiMjI0M33nijDh486PheWFiYRo4cqW7duqm8vFzHjh3T999/r9zcXIWGhur8+fO1nlNeXq6hQ4fqxx9/rPEzuOqqq1RRUaE9e/Y4fh4LFy7UG2+8oWPHjkmqPMyhb9++tZ7Zt29fp20utm/fPg0dOtSxJNZkMmnEiBGKjo5WaWmptm3b5jg84sEHH1RqaqpjJt7mzZs1bty4Op/rrp/3xSwWi5KTkx1fd+nSRRkZGTUO8gAAAG2fd3MXAAAA0Nbt3bvXEU5JDV8OW71fVWD33nvv6a9//auCgoIkSffcc4+6deumBx54wBFAHThwQAcOHKjzWVX9LtazZ099++23euCBB/TBBx9Iks6fP6+NGzc26Dne3t764IMPdPPNNztOOv3hhx/0ww8/ONqYTCY9/fTT+v3vf6833njD2es3ypAhQ5SQkKCf/vSnKiwslGEY+uabb/TNN9/UaPfQQw/p5Zdf1i233OLSc931877Ygw8+qF/84heOr2fPnk1YBwBAO8QMOwAAAA/79a9/rUWLFkmSunXrpoyMjEad+Hnu3Dl169ZNJSUlkqQ33nhD9913X402ZWVlstls2rBhg3bu3KnTp0+rpKREoaGhioqK0ogRI3TXXXdp9OjRTsfbsWOH3n33XX311VfKyMjQuXPn1KFDB/Xs2VNXXXWVbr31Vt19992XXEZaUFCgV155Re+//75SU1NVUlKi7t27a/To0fr5z3/u2OvOldlzjZlhV+XIkSNavHixPv30Ux0/flze3t7q3r27Ro4cqfvuu09jxoyRJI0bN86lGXZV3PnzlqT09HT17t3b8fX+/fsVExPj8nsCAIC2gcAOAAAAaCHeeustRwg7atSoyzr4AwAAtF4cOgEAAAC0ECtWrHBcVz+EAgAAtC/MsAMAAABagF27dumaa66RJIWHhyszM1P+/v7NXBUAAGgOzLADAAAAmllxcbGeeOIJx9ePPPIIYR0AAO0YM+wAAACAZvDqq68qLS1N58+f1xdffKGMjAxJUqdOnXTgwAGFh4c3c4UAAKC5eDd3AQAAAEB7tGbNGseJtFW8vLy0YsUKwjoAANo5lsQCAAAAzaxjx466/fbbtWXLFt15553NXQ4AAGhmLIkFAAAAAAAAWhBm2AEAAAAAAAAtCIEdAAAAAAAA0IIQ2AEAAAAAAAAtCIEdAAAAAAAA0IIQ2AEAAAAAAAAtCIEdAAAAAAAA0IJ4N3cBcL/i4mLt3btXktS5c2d5e/N/MwAAAAAAgCeUl5frzJkzkqQrrrhC/v7+l/9Qo4kcPXrU+NWvfmXExMQYAQEBRseOHY2hQ4cazz//vFFQUOCWMQ4fPmz84he/MGJjY42goCAjICDAiIqKMn7+858bSUlJl+z7xhtvGJIa9JkzZ06dz3K1/9ixY93y3hfbvn17g9+FDx8+fPjw4cOHDx8+fPjw4cOHz+V9tm/f7pZsp0mmXq1fv16zZs1Sbm6u43uFhYXauXOndu7cqeXLl2vjxo2Kiopq9BhLly7VE088odLS0hrfT0tLU1pamlasWKFFixbp8ccfb/QYF4uJiXHbswAAAAAAAABJMhmGYXhygF27dmnkyJEqKipSUFCQnnrqKcXFxamoqEg2m03Lli2TJEVHR2vnzp0KDg5u8Bg2m03x8fGSpNDQUM2fP1833nij/Pz8tGvXLj3//PNKS0uTyWSSzWbTjBkzaj3j/PnzysjIcDrW1KlTdfDgQZnNZh07dkw9e/as1cZkMkmSfv7zn+vRRx+t91mBgYHq16+fq6/psqNHjzqeu337dnXr1s3tYwAAAAAAAEA6efKkhg0bJkk6cuSI+vbte9nP9PgMu3nz5qmoqEje3t769NNPNWLECMe9G2+8UQMHDtRvfvMbpaamatGiRVq4cGGDnl9YWKh58+ZJkoKCgvT111/LYrE47g8dOlQzZ87UqFGjtHfvXj355JO67bbbFBQUVOM5YWFhCgsLu+RYKSkpOnjwoCQpLi6uzrCuui5dutSopalU37OuW7duTusEAAAAAADA5XPXOQIePSV2+/btSkxMlCTdf//9NcK6KvPnz9fgwYMlSUuWLFFZWVmDxvjoo490+vRpSZXhYF0BWUhIiBYvXixJysrK0ptvvtmgMaq8/fbbjuvZs2c36hkAAAAAAADApXg0sFu7dq3jeu7cuXUXYDY7wq/z589r8+bNDRpj586djuuJEyfW227cuHGOUzrWrFnToDEkyW6361//+pekypl806ZNa/AzAAAAAAAAAGc8Gth9/fXXkir3arv22mvrbTd27FjH9datWxs0Rk5OjuO6a9eu9bbz9vZWeHi4JGnbtm0qLy9v0DibN29Wenq6pMp97AIDAxvUHwAAAAAAAHCFR/ewS0lJkSRFRUVdcg3voEGDavVxVfW96C5cuFBvO8MwHKfUlpaWKi0trca4zlRfDjtnzhyX+qxevVqrVq3S0aNH5eXlpcjISN1www267777FBcX5/LYF3N2OMbJkycb/WwAAAAAAAA0L48FdsXFxcrOzpYkp4cedOzYUYGBgSooKHDMYnNV1f53krRly5Z6Z/Lt2rVL+fn5jq+PHz/ucmBXUFCg999/X5LUq1cvl8O2ffv21fg6LS1NaWlpevvttzVlyhS9+eabCg0NdelZ1fXq1avBfQAAAAAAANA6eGxJbF5enuP64hNZ61K1xLR6qOaKiRMnOmbvLV682BESVme327VgwYJ663Pm/fffd9R17733ymQyXbJ9QECArFarli1bpsTERO3atUuffvqpFixYoIiICEmV+/tNnjy5wYdsAAAAAAAAoG3z6Ay7Kr6+vk7b+/n5SZKKiooaNE6vXr30yCOP6NVXX1VmZqZGjhyp559/XnFxcfL19dXu3bu1cOFCbdq0Sb6+viotLW3wOO+8847j2pXTYTMzMxUWFlbr++PHj9cTTzyhiRMnateuXdqyZYtef/11Pfnkky7XIsnpLMSTJ09q2LBhDXomAAAAAAAAWgaPBXZVJ7JKcoRkl1JSUiJJ6tChQ4PHevHFF3X48GF99NFHSk1N1ZQpU2q1GTp0qK677jq9/vrrkqTg4GCXnn3ixAl98cUXkqThw4crJibGaZ+6wroqXbt21Zo1azRo0CCVlZXplVdeaXBg52yJMQAAAAAAAFovjy2JrR6IubLMtaCgQJJry2cv5ufnp/Xr12vZsmW66qqraixZ7dKlixYsWKDExEQZhuH4fseOHV169j//+U/Z7XZJrs2uc0X//v01fvx4SZX72p04ccItzwUAAAAAAEDr57HAzt/f37Ffm7NTTc+dO+cI7Bp7oILZbNYDDzygXbt26cKFCzp48KAyMzN18uRJPfPMM/L399fBgwcd7YcMGeLSc6uWw/r6+spqtTaqtrpUHz8zM9NtzwUAAAAAAEDr5rElsVJlKJWYmKi0tDSVl5c7Doe42P79+x3X1U99bazg4OBaS14rKiq0e/duSZUz3Dp16uT0OT/88IOSkpIkSXfccYfCw8Mvu7Yqzg6uaAlKS0uVn5+vgoIClZaWOmYaAk3BbDbL19dXgYGBCgoKcmkvTAAAAABA0yurKFNuSa4ulFyo/N/iC7W+dlzX0SbEL0Q/PvJjc79Gi+LRwG7UqFFKTExUQUGBvv/+ew0fPrzOdlu2bHFcjxw50iO1bN68WTk5OZKkmTNnutTn7bffdly7azlslX379jmuu3fv7tZnXy7DMJSdnV3nibtAU6oKjbOystS5c2dFRES0irAbAAAAAFoDwzCUX5pff7h2cfBWcqHOMK6ovGEHiF4s1C/UTW/Udng0sJsyZYqeffZZSdIbb7xRZ2Bnt9sdwVhYWJji4uLcXodhGFq4cKEkycfHRw8++KDTPuXl5UpISJAkderUSbfddpvb6jly5Ig+++wzSdKAAQPUo0cPtz3bHU6ePKkLFy7U+J7JZJKXl1czVYT2qKKiosa+k2fOnFFpaWmLC7gBAAAAoDmUVpReOlxzMqvtQvEF5ZXmyW40/2q63JJc2Q27zCaP7dzW6ng0sBs2bJhGjx6txMRErVixQnPmzNGIESNqtFm0aJFSUlIkSfPmzZOPj0+N+1999ZUjxJszZ47efPPNWuPk5OQoKChIfn5+te5VVFToySef1NatWyVJTz31lPr16+e09k8++USnT5+WJMXHx9eqqz7r16/XxIkT613+m5WVpWnTpjlOzn300Uddem5TKS4urhHWRUREKCQkRH5+fsxsQpMyDEMlJSXKzc11zI69cOGCIiIi6vxnHQAAAABaA7thV15J3mXPaiupKGnuV3EbQ4YKSgsU7BfsvHE74dHATpKWLFmikSNHqqioSBMmTNDTTz+tuLg4FRUVyWazaenSpZKk6OhozZ8/v1FjbN68WY8//risVqvGjh2r3r17q7i4WHv27NHSpUsde9dNnDhRCxYscOmZ1ZfDzpkzx+VannjiCZWVlWnatGkaMWKE+vbtqw4dOig7O1tfffWV/v73vzuWmo4aNUqPPfaY6y/aBM6fP++47tKli+PgEKCpmUwm+fv7y9/fX15eXo4A/dy5c4qMjGzm6gAAAAC0N4ZhqKSixC2z2toys8msUL9QhfiFKNT///7XL7Ty2rfm96rahPqFyt/bv7lLb1E8HthdffXVWrlypWbNmqXc3Fw9/fTTtdpER0dr48aNtQ6KaIisrCwtWbJES5YsqXXPZDJp7ty5eu2111zauP78+fNav369JCk2NlbXXnttg2o5ceKEXnnlFb3yyiv1tpk2bZqWL1/e4mYKFRYWOq7DwsKarxCgmrCwMEdgV/3XKAAAAAC4osJeodyS3Mue1VZmL2vuV/GoAJ+A/4Rr1UO1i8K1i8O46vcCfAJYoecGHg/sJGnSpEnas2ePlixZoo0bNyojI0O+vr6KiorS9OnT9fjjjysgIKDRzx89erReeOEFffnll9q/f7+ysrJkNpvVvXt3xcXFae7cufUeeFGX1atXq7i4WJJ07733NqiWt956S1u2bNG2bdt0+PBhZWdnKzc3V0FBQerVq5duuOGGOpcGtxQVFRWSJG9vb/asQ4vh5eUlLy8vVVRUOH6NAgAAAGj7DMNQUXnRZc9qKygraO5X8Shvs3ejZrVVbx/iFyJvc5PERHCByai+qzvahIyMDPXq1UuSlJ6erp49e7rc9+DBgyovL5e3t7cGDhzoqRKBBuPXJgAAANC6lFWUXfasttySXJXby5v7VTwqyDfosme1+Xv7M6utGV1ODlMfolMAAAAAAOBgGIYKygoue1ZbUXlRc7+KR/l6+V72rLZg32B5mVndhtoI7AAAAAAAaCNKK0ovHa65OKvNbtib+1U8xiSTgv2CL3tWm593y9qTHm0LgR0AAAAAAM3MbtiVX5p/2bPaSipKmvtVPMrf2/+yZ7UF+QbJbDI396sAl0RgBwAAAABAIxmGoZKKksue1ZZXkidDbXeLebPJXH+Q5uKsthC/EPl6+Tb3qwBNgsAOAAAAANAuVdgrlFead9mz2srsZc39Kh4V4BNQf5BW17LSi2e++YUo0CeQQxGABiCwA3BJR48eVb9+/SRJb7zxhu67777mLQgAAADtnmEYKiovuuxZbfml+c39Kh7lZfKqNWutrlltlwregn2D5ePl09yvArQ7BHZAM6gegl0Ow2i7U+YBAADQNpXby52Ha05mteWW5KrcXt7cr+JRQb5Blz2rrYN3B2a1Aa0UgR0AAAAAwCnDMFRQVlBnuFbfDLa6vldYVtjcr+JRPmYft8xq8zJ7NferAGhGBHZAM+jRo4f27t1b7/0rrrhCkjR06FC98cYbTVVWnfr27ctMPgAAgFautKLUpVltjpCtnjZ2w97cr+IxJpkU7Bd82bPa/L39m/tVALQBBHZAM/Dx8ZHFYnHaLjAw0KV2AAAAaJvshl35pfmXPautuLy4uV/Fo/y9/V06gfRSwVuQb5DMJnNzvwoASCKwAwAAAACPKC4vdh6uOZnVlleSJ0Ntd7WD2WSuN1RryKw2Xy/f5n4VAHArAjuglRk3bpy2bNmisWPH6quvvtLBgwe1ZMkSbdq0SZmZmSoqKtKRI0fUt29fSdLJkyf1wQcf6Msvv9SPP/6oEydOqLy8XJ06ddLQoUP105/+VNOnT5fZXPffJjo7JXbhwoX67//+b0mV+5oUFxfrlVdeUUJCgg4ePChJGjx4sGbPnq1HHnlE3t78awcAALRsFfYK5ZXmNXhW28VLTksrSpv7VTwqwCeg/iDNxVltgT6BHIoAAHXgT85AK/bhhx/qnnvuUUFBQZ33Kyoq1LNnT9nttfcaOXHihNatW6d169ZpxYoVev/99xUUFHRZ9WRlZenWW2/V7t27a3x/x44d2rFjhz799FOtXbu23nAQAADgchiGoaLyosue1ZZfmt/cr+JRXiavWociXDyrrday0ovahPiFyMfLp7lfBQDaLAI7NJjdsCunMKe5y2hSEQERLW4/i+PHj2vWrFkKCAjQ7373O40ePVpeXl7asWOHI3irOizixhtv1MSJE3XFFVeoc+fOysvL0+HDh7Vs2TJt27ZNn332mR577DG99dZbl1XT1KlTtW/fPj355JOaNGmSwsPDdeDAAf3xj39USkqK1q9fr2XLlunhhx++7PcHAABtS7m93PlBCC7Maiu3lzf3q3hUkG/QZc9q6+DdgVltANDCEdihwXIKc9TlxS7NXUaTOv3r0+oc2Lm5y6jhyJEj6t69u7Zt26bevXs7vj98+HDHtZeXlw4cOKCoqKha/ceOHau5c+fqD3/4g/7nf/5H77zzjn77299q4MCBja6pahbduHHjHN+75pprdMstt2jIkCHKysrSa6+9RmAHAEAbYhiGCsoKLntWW2FZYXO/ikf5mH0uHaS5OKvNy+zV3K8CAGgCBHZAK/bcc8/VCOsuZjKZ6gzrqvv973+v1157TdnZ2Vq3bp3mz5/f6HqeeOKJGmFdlfDwcM2dO1fPPfec9u7dqwsXLig0NLTR4wAAAPcoqyhzHq65MKvNbtTefqMtqQrLXJ3VVlfw5uflx6w2AIDLCOyAVsrX11fTp09vUB+73a5Tp04pLy9PZWVlju/37NlT2dnZ+vHHHy+rpnvuuafee9dee62kyr+FP3LkiK666qrLGgsAgPbMbtiVX5rv2qy20prhWvU2xeXFzf0qHuXn5XfZs9qC/YJb3NYoAIC2j8AOaKUGDhwof39/p+0Mw9C//vUvrVixQt99952KiorqbZudnX1ZNQ0aNKjee+Hh4Y7rvLy8yxoHAIDWrKS85LJnteWV5MmQ0dyv4jFmk/myZ7WF+IXIz9uvuV8FAIBGIbBDg0UEROj0r083dxlNKiIgorlLqKVjx45O2xQXF2vq1Kn6+OOPXXrmpcI8VwQEBNR7r/rJsBUVFZc1DgAAzaHCXqG80rzLntVWWlHa3K/iUR28O1z2rLYg3yCWjwIA2jUCOzSY2WRucQcwtEdeXs43HP7Tn/7kCOvGjh2rxx57TNdcc40iIyPVoUMHR4g2ZswYJSYmOk6VBQCgLTEMQ8XlxZc9qy2/NL+5X8WjvExedc5Ya+isNh8vn+Z+FQAAWj0CO6CNMgxDy5cvlySNHj1aX375ZY1ZbtWdPXu2KUsDAMBl5fZy5ZbkXvastnJ7eXO/ikcF+gRe9qy2AJ8AZrUBANBCENgBbdTZs2d16tQpSdL06dPrDevy8/N14MCBpiwNAIBazhef1/sp7+v9lPd16NwhR/BWWFbY3KV5lI/Z57JntQX7BcvbzG/rAQBoS/gvO9BGlZf/ZyZBQUFBve2WL19eoy0AAE2loLRA6w6sky3Zpk/SPml1e7sF+wZf9qw2f29/ZrUBAIBaCOyANqpz584KCwvT+fPnlZCQoF/+8pfy86t5UtqOHTv0u9/9rpkqBAC0RyXlJfo47WPZkmxan7q+WWbQ+Xn5OQ3S6gzgqn0d7Bcss6nu2esAAACXi8AOaKPMZrPuuece/fWvf9WePXs0atQo/epXv9LAgQN14cIFffTRR3rttdcUFBSk7t27KzU1tblLBgC0UeX2cn1x+AvZkm36IOUDXSi50KjnmGRyujy0zmWlF7X38/ZzPhgAAEAzIrAD2rA//elP2rp1q3bv3q2dO3fqpz/9aY374eHheu+99/T73/+ewA4A4FZ2w66vj38tW5JNq/etVnZhttM+fl5+um3gbboz5k51C+pWK3gL9A1kVhsAAGgXCOyANiw0NFRbt27V4sWLtWrVKh08eFDe3t7q1auXbr/9ds2bN089e/Zs7jIBAG2EYRj6/uT3StiboJXJK5WZl+m0j5fJS+MHjJc11qopg6Yo1D+0CSoFAABo2UyGYRjNXQTcKyMjQ7169ZIkpaenNyiQOXjwoMrLy+Xt7a2BAwd6qkSgwfi1CQAtV/LpZCUkJciWZNOhc4ectjfJpDF9xshqsWra4GnqHNi5CaoEAADwjMvJYerDDDsAAAA02KGzh2RLssmWbFPS6SSX+gzrMUzWWKtmxM5Qj5AeHq4QAACg9SKwAwAAgEsycjO0KnmVbEk27Tixw6U+V3S5QlaLVTNjZ2pA+AAPVwgAANA2ENgBAACgXmcKzmjNvjWyJduUeCxRhpzvpjKg4wDFW+JltVgV2yW2CaoEAABoWwjsAAAAUMOF4gv6YP8HsiXZ9Pnhz1VhVDjt0zOkp2bGzpTVYtW13a6VyWRqgkoBAADaJgI7AAAAqLCsUOsPrJct2aaPDn6k0opSp306B3TW9CHTZbVYNbL3SJlN5iaoFAAAoO0jsAMAAGinSspLtOnQJtmSbFp3YJ0Kygqc9gn1C9XUwVNltVh1Y78b5W3mt5MAAADuxu+wAAAA2pFye7k2H9ksW5JN7+9/X+eLzzvtE+AToDtj7pQ11qpbo26Vn7ef5wsFAABoxwjsAAAA2ji7Yde29G1KSErQ6n2rdbrgtNM+vl6+mhg1UVaLVZOiJynQN7AJKgUAAIBEYAcAANAmGYahXad2KWFvglYmr1R6brrTPl4mL93U/yZZY626a/BdCvMP83yhAAAAqIXADgAAoA1JOZOihKQE2ZJsOnj2oEt9RvceLavFqruH3K0ugV08XCEAAACcIbADAABo5Y6cOyJbkk22ZJv2ZO1xqc+13a5VvCVeM2JnqFdoLw9XCAAAgIYgsAMAAGiFTuSd0KrkVbIl2fRd5ncu9RnSeYjiLfGaGTtTAyMGerhCAAAANBaBHQAAQCuRU5ijNfvWyJZs05ajW2TIcNqnf8f+ssZaZbVYZelikclkaoJKAQAAcDkI7AAAAFqw3JJcfbj/QyUkJeizw5+p3F7utE/34O6aGTtTVotV13W/jpAOAACglSGwAwAAaGGKyoq08eBGJSQlaGPqRpVUlDjtE9EhQtOHTJfVYtWo3qPkZfZqgkoBAADgCQR2AAAALUBpRak+PfSpbEk2fXjgQ+WX5jvtE+IXorsG3SWrxaqb+t0kHy+fJqgUAAAAnkZgBwAA0Ewq7BXacmyLEvYm6L2U93Su+JzTPh28O2hSzCRZY62aOHCi/L39m6BSAAAANCVzUw107NgxzZ8/X4MGDVJgYKDCw8N13XXX6YUXXlBhYaFbxjhy5Ih++ctfymKxKDg4WIGBgRo4cKAeffRRJScnO+1/3333yWQyufQ5evSo0+c1xTsDAIDWxTAMbUvfpic/flI9X+qpm96+Sct3Lb9kWOdj9tGk6En619R/KevXWVp590rdNfguwjoAAIA2qklm2K1fv16zZs1Sbm6u43uFhYXauXOndu7cqeXLl2vjxo2Kiopq9BhLly7VE088odLS0hrfT0tLU1pamlasWKFFixbp8ccfb/QYDdEU7wwAAFoHwzD0Y9aPStiboJXJK3XswjGnfcwms27sd6OssVbdNfguhXcIb4JKAQAA0BJ4PLDbtWuXZs6cqaKiIgUFBempp55SXFycioqKZLPZtGzZMqWmpur222/Xzp07FRwc3OAxbDabHn74YUlSaGio5s+frxtvvFF+fn7atWuXnn/+eaWlpenJJ59Uly5dNGPGjEs+r3v37tq0adMl2/To0aNZ3xkAALR8B7IPKCEpQbYkmw7kHHCpzw29blC8JV53D7lbkUGRHq4QAAAALZHHA7t58+apqKhI3t7e+vTTTzVixAjHvRtvvFEDBw7Ub37zG6WmpmrRokVauHBhg55fWFioefPmSZKCgoL09ddfy2KxOO4PHTpUM2fO1KhRo7R37149+eSTuu222xQUFFTvM318fGo8o6E8/c5o/Y4ePap+/fpd9nMMw3BDNQAAdzp2/phsSTbZkm3afWq3S32ujrxa8ZZ4zYidoT5hfTxbIAAAAFo8j+5ht337diUmJkqS7r///hrBVZX58+dr8ODBkqQlS5aorKysQWN89NFHOn36tKTKoKyuoC0kJESLFy+WJGVlZenNN99s0BgN0RTvDDSXcePGyWQyady4cc1dCgC0KKfyT+nl717WDStuUN8lffVfX/yX07BuUKdB+u9x/639j+3XDw//oP9v5P9HWAcAAABJHp5ht3btWsf13Llz62xjNps1e/ZsPfXUUzp//rw2b96sCRMmuDzGzp07HdcTJ06st924cePk7++v4uJirVmzxmN72TXFO6P169Gjh/bu3Vvv/SuuuEJS5QzRN954o6nKAgA0wNmis3o/5X0lJCXoq6NfyW7YnfbpG9ZX1lirrBarftL1JzKZTE1QKQAAAFobjwZ2X3/9tSQpMDBQ1157bb3txo4d67jeunVrg8KrnJwcx3XXrl3rbeft7a3w8HCdOHFC27ZtU3l5uby93f/6TfHOaP1cXXYdGBh4WcuzAQDulVeSp3UH1ikhKUGbDm1Sub3caZ/IoEjNjJ0pq8Wq4T2GE9IBAADAKY8GdikpKZKkqKioS4ZjgwYNqtXHVdX3ortw4UK97QzDcJzYWlpaqrS0tBrjVpeTk6OxY8cqKSlJ+fn5Cg8P109+8hNNmjRJP/vZzxQQEFDvOE3xzhkZGZe8f/LkyQY9DwAA1K+orEgfp32shKQEbUjdoOLyYqd9wjuE6+7Bd8tqsWpMnzHyMns1QaUAAABoKzwW2BUXFys7O1uS1LNnz0u27dixowIDA1VQUKD09PQGjVO1F5wkbdmypd5Zbbt27VJ+fr7j6+PHj9cb2OXn5+vf//634+tTp07p1KlT+vTTT/Xcc89p1apVuuGGG2r1a6p37tWrV4Pao2364YcftHTpUm3evFmZmZkyDEM9e/bUjTfeqF/+8peKjo6ut+/58+f117/+VRs2bND+/fuVn5+vsLAwde7cWTExMZowYYKmTp3qmLV633336a233nL037JlS60ZIn369NHRo0c98q4A0NTKKsr0+eHPlZCUoLX71yqvNM9pnyDfIE0ZNEXxlnjd3P9m+Xr5NkGlAAAAaIs8Ftjl5f3nN7aXOpG1SlV4VT1Uc8XEiRPl7e2t8vJyLV68WLNnz1anTp1qtLHb7VqwYEG99VUxmUy6/vrrNWnSJF1zzTXq2rWriouLtXfvXq1YsULbt29XZmamJkyYoMTERF199dX1PtOT74z2zW6369e//rX+8pe/1DolNjU1VampqVq+fLn++te/6qGHHqrVPyUlRTfffLNOnDhR4/vZ2dnKzs5WSkqK1q5dq4qKCo/t9QgALVGFvUKJxxOVsDdBa1LW6GzRWad9/L39dUf0HbLGWnXbwNvUwadDE1QKAACAts6jM+yq+Po6/xtmPz8/SVJRUVGDxunVq5ceeeQRvfrqq8rMzNTIkSP1/PPPKy4uTr6+vtq9e7cWLlyoTZs2ydfXV6WlpfWO89JLLyksLKzW90eMGKEHH3xQv/3tb/XnP/9ZBQUFeuCBB7Rz584as4ya6p2dzcg7efKkhg0b1qBnNoTdLlXbOrBdiIiQzB49U9l1TzzxhF577TVJ0pgxY3Tfffepf//+CggI0I8//qi//OUvSk5O1sMPP6zIyEjdeeedNfrfe++9OnHihHx8fPTggw9q4sSJioyMlN1uV0ZGhr799lt98MEHNfr86U9/0q9//WvNnTtXO3furPMwDFd+zQNAS2MYhrZnbpctyaaVySt1Mt/5thLeZm/dMuAWWS1W3Rlzp0L8QpqgUgAAALQnHgvs/P39HddVIdmllJSUSJI6dGj430y/+OKLOnz4sD766COlpqZqypQptdoMHTpU1113nV5//XVJUnBwcK02dYV1VUwmk/70pz/pu+++0xdffKEffvhB33zzjUaOHOlo01Tv7Gy5rafl5EhdujRrCU3u9Gmpc+fmrkL67LPPHGHd8uXLdf/999e4f91112nWrFm6/fbb9eWXX+rJJ5/Ubbfd5thP8fDhw/r+++8lSYsXL641g27YsGGaOnWq/vd//1fnz593fL9Hjx7q0aOHAgMDJXEYBoDWzTAM7T29Vwl7E2RLtuno+aNO+5hkUly/OFljrZo6eKoiAiI8XygAAADaLY/NGaoeiLmy5LOgoECSa0tJL+bn56f169dr2bJluuqqq2rMeuvSpYsWLFigxMTEGssHO3bs2OBxJOnhhx92XG/ZsqXGvaZ8Z7RPzz33nCRp2rRptcK6Kv7+/nr11VclSceOHdPmzZsd906dOuW4HjNmTL3jmEymRv8zAgAtVWpOqv5ny/8o9rVYXfm3K/Xc1uechnXX97xeS25dosxfZeqL2V/owWsfJKwDAACAx3l0hl1ERIRycnKcnmp67tw5R3jV2AMVzGazHnjgAT3wwAPKy8tTVlaWAgICFBkZKfP/rWU8ePCgo/2QIUMaNU71fpmZmTXuNfU7o33Jzc3VV199JUm6++67L9l28ODB6tSpk7Kzs7Vt2zaNHz9ektStWzdHmzfffFOLFy/2WL0A0BIcv3BcK5NWypZs0w8nf3Cpz5Vdr1S8JV4zYmeoX8d+Hq4QAAAAqM1jgZ1UGW4lJiYqLS1N5eXljmV5F9u/f7/juvqpr40VHBxca8lrRUWFdu/eLUnq379/rYMpXHXxyZgXa653Rtu3a9cu2e12SVJ8fLzi4+Nd6ld9Vl2/fv00evRoJSYm6qWXXtKmTZs0bdo0jRs3Ttdff70CAgI8UjsANKWs/Cyt2bdGCUkJ2pq+1aU+0RHRirfEa2bsTA3uzH+XAQAA0Lw8GtiNGjVKiYmJKigo0Pfff6/hw4fX2a760tLqe8K50+bNm5XzfyclzJw5s9HP2bdvn+O6e/fute63pHf2lIiIyj3d2pOIFrD66XQjf+iFhYU1vk5ISND06dO1bds27du3T/v27dMf//hH+fj46Prrr9dPf/pT3XfffTX2ZASAlu5c0Tl9sP8DJSQl6MsjX8pu2J326R3aW9ZYq6wWq66KvMrpX8oBAAAATcWjgd2UKVP07LPPSpLeeOONOsMru92ut99+W1LloQ9xcXFur8MwDC1cuFCSHCdjNtbf//53x/XYsWNr3W8p7+xJZnPLOIChvamoqHBc//3vf9cNN9zgUr+L96Lr0aOHvvnmG33xxRd6//33tWXLFu3bt09lZWVKTExUYmKiXnzxRX300UeKjo526zsAgDvll+Zr/YH1SkhK0Cdpn6jMXua0T5fALpoxZIbir4jX9T2vl9nUQo4ABwAAAKrxaGA3bNgwx/K7FStWaM6cORoxYkSNNosWLVJKSookad68efLx8alx/6uvvnIEWnPmzNGbb75Za5ycnBwFBQXJz8+v1r2Kigo9+eST2rq1cknMU089pX79au9H8+2336pPnz419viqzjAM/e53v9Pnn38uSbryyivrnBnnjncG6hJRbZpfQEDAZZ/SetNNN+mmm26SVPnP0Oeff66lS5fqyy+/1KFDhzRz5kzt2rXrssYAAHcrLi/WJ2mfKCEpQesPrFdReZHTPmH+YZo2eJriLfEa23esvM0e/e0PAAAAcNk8/jvWJUuWaOTIkSoqKtKECRP09NNPKy4uTkVFRbLZbFq6dKkkKTo6WvPnz2/UGJs3b9bjjz8uq9WqsWPHqnfv3iouLtaePXu0dOlSx951EydO1IIFC+p8xieffKLnnntOt956q8aPH68hQ4YoLCxMJSUl2rNnj/7xj3/ou+++k1QZlixbtqzepTNN8c5of6pOQDYMQ1u3btWsWbPc9uyIiAjNnDlTM2fO1OTJk7Vu3Trt3r1bBw8e1MCBAx3tWC4GoDmUVZTpyyNfKiEpQR/s/0C5JblO+wT6BGryoMmKt8RrwoAJ8vXybYJKAQAAAPfweGB39dVXa+XKlZo1a5Zyc3P19NNP12oTHR2tjRs31joooiGysrK0ZMkSLVmypNY9k8mkuXPn6rXXXpOvb/2/YS8pKdGHH36oDz/8sN42vXv31rvvvqvrrruu3jZN9c5oXzp37qzrr79e27Zt07vvvqv/+Z//UWcPrE2+6aabtG7dOklSdnZ2jcCual+7kpISt48LANXZDbu+Pv61bEk2rd63WtmF2U77+Hn56baBtyneEq/bo29XgA8H6QAAAKB1apI1IZMmTdKePXu0ZMkSbdy4URkZGfL19VVUVJSmT5+uxx9//LJOpxw9erReeOEFffnll9q/f7+ysrJkNpvVvXt3xcXFae7cufUe/lBl7ty56tq1q7Zt26Y9e/bo9OnTysnJkbe3tzp16qRrrrlGkyZN0k9/+lOXNuP39Dujffrtb3+r22+/Xbm5ubr77rv14YcfKiwsrM62JSUlWr58ue6//37Hr9mq2aZXXXVVnX0Mw3As+zaZTOrbt2+N+1VLxg8fPizDMJhxB8CtDMPQzhM7ZUuyaWXySmXmZTrt42Xy0vgB4xVvidfkmMkK9Q9tgkoBAAAAzzIZhmE0dxFwr4yMDPXq1UuSlJ6erp49e7rc9+DBgyovL5e3t3eNmVVoWlVB2NixY/XVV1/VuPeLX/zCMZM0MjJSjzzyiEaNGqWIiAgVFBQoLS1NiYmJev/993Xu3Dnl5eUpKChIkvTmm29q7ty5uu666zRp0iRdc801ioyMVFlZmY4cOaI33nhDn332mSRp8uTJWrt2bY2xly9f7ji05Re/+IVmzZql0NDKPxz7+PioT58+nvqR8GsTaMOSTifJlmSTLcmmQ+cOOW1vkklj+oxRvCVe04ZMU6eATk1QJQAAAFC3y8lh6sOuy0Ar89JLLyk8PFx//OMfderUKccJyHUJDAyUl5dXre/v2LFDO3bsqLffDTfcoBUrVtT6vtVq1bPPPqvDhw/rL3/5i/7yl7847vXp00dHjx5tyKsAaMfSzqZpZdJKJSQlKPlMskt9hvUYpnhLvKYPma4eIT08XCEAAADQfAjsgFbGZDLp97//ve6991797W9/05dffqnDhw/rwoULCggIUK9evXT11VdrwoQJuuuuu9ShQwdH3/j4eHXt2lWfffaZduzYoczMTGVlZam8vFxdunTRNddco5kzZ8pqtcpsNtcaOygoSN98842effZZffrppzp27JgKCwub8vUBtGIZuRlalbxKCUkJ2nlip0t9ruhyheIt8Zppman+Hft7uEIAAACgZWBJbBvEkli0RfzaBFqnMwVntGbfGiUkJSjxeKJLfaLCoypDutiZiu0S6+EKAQAAgMvDklgAANDinS8+r7X71yohKUFfHP5CFUaF0z49Q3rKGmuV1WLVNd2u4VAbAAAAtGsEdgAA4LIVlBZoQ+oGJSQl6OO0j1VaUeq0T+eAzpo+ZLrir4jXDb1ukNlUeyk+AAAA0B4R2AEAgEYpKS/RpkOblJCUoHUH1qmwzPmelqF+oZo6eKriLfGK6xcnbzO/FQEAAAAuxu+SAQCAy8rt5dp8ZLMSkhL0fsr7ulBywWmfAJ8A3Rlzp+It8bplwC3y8/ZrgkoBAACA1ovADgAAXJLdsOub9G9kS7Jp9b7VOl1w2mkfXy9fTYyaqHhLvO6IvkOBvoFNUCkAAADQNhDYAQCAWgzD0A8nf5AtyaaVySuVnpvutI+XyUs39b9J8ZZ4TRk0RWH+YZ4vFAAAAGiDCOwAAIDDvjP7ZEuyyZZk08GzB13qM7r3aMVb4jVtyDR1Cezi4QoBAACAto/ADgCAdu7wucNambRSCUkJ2nt6r0t9hnYfKmusVTNiZ6hXaC8PVwgAAAC0LwR2AAC0QyfyTmhV8iolJCVoe+Z2l/oM6TxE8ZZ4WS1WRYVHebhCAAAAoP0isAMAoJ3ILszWe/veky3Zpi1Ht8iQ4bRP/479HSGdpYulCaoEAAAAQGCHGry8vFReXq6KigoZhiGTydTcJQEyDEMVFRWSKn+NAnBdbkmu1u5fK1uSTZ8d/kzl9nKnfboHd9fM2JmKt8RraPeh/LcAAAAAaGIEdqjB19dXJSUlMgxDhYWFCgwMbO6SABUWFsowKmcC+fr6NnM1QMtXWFaojakblZCUoI8OfqSSihKnfSI6RGj6kOmKvyJeo3qPktlkboJKAQAAANSFwA41hISEKC8vT5J09uxZBQQEMLMCzcowDJ09e9bxdUhISDNWA7RcpRWl+vTQp0pIStCH+z9UQVmB0z4hfiG6a9BdirfE68Z+N8rHy6cJKgUAAADgDIEdaggKCpLJZJJhGMrPz1dGRobCw8MJ7tDkqmZ5nj17Vvn5+ZIkk8mkoKCgZq4MaDkq7BX66uhXsiXZ9F7KezpXfM5pnw7eHTQpZpLiLfG6NepW+Xv7N0GlAAAAABqCwA41mM1m9ejRQ5mZmY7QLj8/XyaTib3D0KSq9lGsYjKZ1KNHD5nNLNND+2Y37Po241vZkmxalbxKWQVZTvv4mH10a9StirfEa1LMJAX5EnwDAAAALRmBHWoJDg6uEdpJlbOdysudb1QOeEJVWBccHNzcpQDNwjAM7T61W7Ykm2zJNh2/cNxpH7PJrBv73ShrrFVTB09Vxw4dm6BSAAAAAO5AYIc6BQcHKzo6Wvn5+crNzVVpaanjlE6gKXh5ecnX11chISEKCgpiZh3apf3Z+ytDuiSbDuQccKnPyF4jZbVYNX3IdHUN6urhCgEAAAB4AoEd6mU2mxUSEsIm/wDQhI6eP6qVSSuVkJSgH7N+dKnPNd2ukTXWqpmWmeod2tvDFQIAAADwNAI7AACa2cm8k1q9b7VsSTZty9jmUp9BnQYp3hIvq8Wq6IhoD1cIAAAAoCkR2AEA0AxyCnP0fsr7siXb9NXRr2Q37E779A3rK2usVfFXxOuKLldwejcAAADQRhHYAQDQRPJK8vThgQ9lS7Jp06FNKrc7P8ynW1A3zYidoXhLvIb1GEZIBwAAALQDBHYAAHhQUVmRPjr4kWzJNm1I3aDi8mKnfcI7hOvuwXfLarFqTJ8x8jJ7NUGlAAAAAFoKAjsAANysrKJMnx3+TLYkm9buX6u80jynfYJ9gzVl0BTFW+J1c/+b5ePl0wSVAgAAAGiJCOwAAHCDCnuF/n3s37Il2bQmZY3OFp112sff2193RN+heEu8JkZNVAefDk1QKQAAAICWjsAOAIBGMgxD32V+J1uSTauSV+lk/kmnfbzN3rplwC2yWqyaHDNZwX7BTVApAAAAgNaEwA4AgAYwDEN7svbIlmSTLdmmo+ePOu1jkklx/eJkjbVq6uCpigiI8HyhAAAAAFotAjsAAFyQmpMqW5JNCUkJ2p+936U+I3qOkNVi1fQh09UtuJuHKwQAAADQVhDYAQBQj+MXjmtl0kolJCVo16ldLvW5KvIqWWOtmmmZqb5hfT1bIAAAAIA2icAOAIBqsvKztHrfatmSbNqavtWlPtER0Yq3xMtqsWpQp0EerhAAAABAW0dgBwBo984VndP7Ke/LlmzTl0e+lN2wO+3TO7S3rLFWxV8Rryu7XimTydQElQIAAABoDwjsAADtUn5pvtYdWCdbkk2fpH2iMnuZ0z5dA7tqRuwMWS1WXd/zeplN5iaoFAAAAEB7Q2AHAGg3isuL9fHBj2VLtmn9gfUqKi9y2qejf0dNGzxNVotV4/qOk5fZqwkqBQAAANCeEdgBANq0sooyfXHkC9mSbPpg/wfKLcl12ifQJ1BTBk2R1WLVhAET5Ovl2wSVAgAAAEAlAjsAQJtjN+xKPJYoW5JNa1LWKLsw22kfPy8/3R59u6yxVt0efbsCfAKaoFIAAAAAqI3ADgDQJhiGoR0ndsiWZNPK5JU6kXfCaR8vk5cmDJggq8WqKYOmKMQvpAkqBQAAAIBLI7ADALRqe7P2ypZkky3ZpsPnDjttb5JJY/uOlTXWqmlDpqlTQKcmqBIAAAAAXEdgBwBoddLOplWGdEk2JZ9JdqnP8B7DZbVYNSN2hroHd/dwhQAAAADQeAR2AIBWIf1CulYlr5It2aadJ3a61OcnXX8ia6xVMy0z1b9jfw9XCAAAAADuQWAHAGixThec1pp9a2RLsinxeKJLfaLCoxRviZfVYtWQzkM8XCEAAAAAuB+BHQCgRTlffF4fpHwgW7JNXxz+QhVGhdM+PUN6yhprldVi1TXdrpHJZGqCSgEAAADAMwjsAADNrqC0QOtT18uWZNPHaR+rtKLUaZ8ugV00fch0WS1W3dDrBplN5iaoFAAAAAA8j8AOANAsSspL9EnaJ7Il27TuwDoVlhU67RPqF6ppg6fJarEqrl+cvM38ZwwAAABA29Nkf9I5duyYXn75ZW3cuFHp6eny8/PTgAEDNGPGDD322GMKCAi47DGOHDmil19+WZ999pmOHTsmu92u7t27a/z48XrssccUGxt7yf5ZWVlav369vvzyS+3evVvHjx9XaWmpIiIidOWVV2rq1Km699571aFDh0s+x9WlWGPHjtVXX33l6usBQKtXbi/Xl0e+lC3JpvdT3teFkgtO+wT4BGhyzGRZLVbdMuAW+Xn7NUGlAAAAANB8TIZhGJ4eZP369Zo1a5Zyc3PrvB8dHa2NGzcqKiqq0WMsXbpUTzzxhEpL615G5evrq0WLFunxxx+v8/6yZcv085//XBUVl94raeDAgVqzZo1+8pOf1NumuQO7jIwM9erVS5KUnp6unj17un0MAHCV3bBr6/GtsiXZtHrfap0pPOO0j6+Xr24beJussVbdEX2HAn0Dm6BSAAAAAGg4T+QwHp9ht2vXLs2cOVNFRUUKCgrSU089pbi4OBUVFclms2nZsmVKTU3V7bffrp07dyo4OLjBY9hsNj388MOSpNDQUM2fP1833nij/Pz8tGvXLj3//PNKS0vTk08+qS5dumjGjBm1npGVlaWKigr5+vrqjjvu0IQJEzR48GAFBwfr0KFDWrZsmT799FMdPHhQN998s3744Qen/wf8/Oc/16OPPlrv/cBA/gAKoG0yDEPfn/xetiSbViavVEZuhtM+XiYv3dz/ZlktVk0ZNEVh/mGeLxQAAAAAWiCPz7AbM2aMEhMT5e3trX//+98aMWJEjfsvvPCCfvOb30iS/vCHP2jhwoUNen5hYaH69eun06dPKygoSNu2bZPFYqnRJjc3V6NGjdLevXvVtWtXpaWlKSgoqEabl156SVlZWZo/f746d+5c51jz58/X4sWLJUlz587VP/7xjzrbVc2wa8z7uAMz7AA0l+TTybIl2WRLtintbJpLfcb0GSNrrFXThkxTl8AuHq4QAAAAANzLEzmMRwO77du3a/jw4ZKkhx9+WH/7299qtbHb7bJYLEpJSVFYWJhOnz4tHx8fl8dYs2aNpk+fLklasGCBnnnmmTrbff755xo/frwk6ZVXXql3aeyllJaWqm/fvjp58qRCQ0N19uxZmc21TyUksAPQnhw+d7gypEuyae/pvS71ua77dbJarJoRO0M9Q/h3FAAAAIDWyxM5TO20yY3Wrl3ruJ47d27dBZjNmj17tiTp/Pnz2rx5c4PG2Llzp+N64sSJ9bYbN26c/P39JVWGfI3h6+urkSNHSpIuXLignJycRj0HAFq7zNxMvbTtJQ1fPlwDXh6gBV8ucBrWWbpY9EzcMzr4xEFtf3C7fjXiV4R1AAAAAFAHj+5h9/XXX0uq3Kvt2muvrbfd2LFjHddbt27VhAkTXB6jemjWtWvXett5e3srPDxcJ06c0LZt21ReXi5v74a/fklJiePay8urwf0BoLXKLszWmn1rZEuy6d/H/i1Dzido9+/YX/GWeFktVlm6WJy2BwAAAAB4OLBLSUmRJEVFRV0yHBs0aFCtPq6qvhfdhQsX6m1nGIbjlNrS0lKlpaXVGNcVZWVl2rZtm6TKcDA8PPyS7VevXq1Vq1bp6NGj8vLyUmRkpG644Qbdd999iouLa9DY1WVkXHrz9pMnTzb62QBQ3YXiC1q7f61syTZ9dugzVRiXPklbknoE99DM2JmyWqwa2n2oyydnAwAAAAAqeSywKy4uVnZ2tiQ5XbvbsWNHBQYGqqCgQOnp6Q0aZ/DgwY7rLVu21DuTb9euXcrPz3d8ffz48QYHdkuXLnW8U9W+eZeyb9++Gl+npaUpLS1Nb7/9tqZMmaI333xToaGhDapBkmNdNAB4QmFZoTakbpAtyaaPDn6kkooSp306BXTS9CHTZbVYNar3KJlNHt1xAQAAAADaNI8Fdnl5eY7ri09krUtVYFc9VHPFxIkT5e3trfLyci1evFizZ89Wp06darSx2+1asGBBvfW54vDhw45nBAUF6amnnqq3bUBAgO68807ddNNNGjRokIKCgnTmzBlt2bJFf/vb35STk6O1a9dq8uTJ+uyzzxp0yAYAeEJpRak2pW2SLdmmD/d/qIKyAqd9QvxCNHXwVFljrbqp/03yNnt00jYAAAAAtBsenWFXxdfX12l7Pz8/SVJRUVGDxunVq5ceeeQRvfrqq8rMzNTIkSP1/PPPKy4uTr6+vtq9e7cWLlyoTZs2ydfXV6WlpQ0ep7CwUFOnTnUsuX3llVfUvXv3ettnZmYqLCys1vfHjx+vJ554QhMnTtSuXbu0ZcsWvf7663ryyScb9M7OZiGePHlSw4YNa9AzAbQ/FfYKbT66WbYkm95LeU/ni8877dPBu4PujLlTVotVt0bdKn9vf88XCgAAAADtjMcCu6oTWSU5QrJLqTrMoUOHDg0e68UXX9Thw4f10UcfKTU1VVOmTKnVZujQobruuuv0+uuvS5KCg4NdenZ5ebmmT5+uH3/8UZL085//XPfdd98l+9QV1lXp2rWr1qxZo0GDBqmsrEyvvPJKgwM7dxwPDKB9sht2bUvfJluSTav3rVZWQZbTPj5mH00cOFHWWKsmxUxSkK/zWdMAAAAAgMbz2CZD1QMxV5a5FhRULr9yZfnsxfz8/LR+/XotW7ZMV111VY0Nzrt06aIFCxYoMTFRhvGfEw07duzo9LmGYei+++7TRx99JEmaMWOGXn311QbXd7H+/ftr/Pjxkir3tTtx4sRlPxMA6mMYhn44+YN+89lv1G9JP416Y5Re3fHqJcM6s8ms8f3Ha8WdK5T16yx9aP1Q8VfEE9YBAAAAQBPw6Ay7iIgI5eTkOD3V9Ny5c47ArrEHKpjNZj3wwAN64IEHlJeXp6ysLAUEBCgyMlJmc2UuefDgQUf7IUOGOH3mY489pn/961+SKvfK++c//+l41uUaMmSIIwjMzMy85BJbAGiMlDMpsiXZZEu2KTUn1aU+o3qPkjXWqruH3K2uQV09XCEAAAAAoC4e3SF8yJAhSkxMVFpamsrLy+XtXfdw+/fvd1xXP/W1sYKDg2stea2oqNDu3bslVc5wu/hgiov9v//3/xzLZ8eMGaP33nvPrYdDVJ8FCADucvT80cqQLsmmH7N+dKnPtd2uldVi1YzYGeod2tvDFQIAAAAAnPFoYDdq1CglJiaqoKBA33//vYYPH15nuy1btjiuR44c6ZFaNm/erJycHEnSzJkzL9n2mWee0fPPPy9Juu6667Rhw4ZG7a13Kfv27XNcM7sOwOU4mXdSq5JXyZZs07cZ37rUZ3CnwYq3xGumZaaiI6I9XCEAAAAAoCE8GthNmTJFzz77rCTpjTfeqDOws9vtevvttyVVHtYQFxfn9joMw9DChQslST4+PnrwwQfrbbtkyRL97ne/kyRdccUV+uSTT1w+oMJVR44c0WeffSZJGjBggHr06OHW5wNo+3IKc/ReynuyJdn01dGvZMhw2qdfWD9ZLVZZLVZd0eUKZvoCAAAAQAvlsUMnJGnYsGEaPXq0JGnFihXatm1brTaLFi1SSkqKJGnevHm1lp1+9dVXMplMMplM9Z7OmpOT4zhl9mIVFRV6/PHHtXXrVknSU089pX79+tXZ9o033tAvf/lLSVJ0dLQ+++wzhYeHO3/RatavX6/y8vJ672dlZWnatGmOk3MfffTRBj0fQPuVW5Krd358R7e/e7siF0Xq4Q0Pa/PRzZcM67oFddMvhv9C397/rQ49eUh/vunP+knXnxDWAQAAAEAL5tEZdlLljLWRI0eqqKhIEyZM0NNPP624uDgVFRXJZrNp6dKlkioDsvnz5zdqjM2bN+vxxx+X1WrV2LFj1bt3bxUXF2vPnj1aunSpY++6iRMnasGCBXU+Y+3atXrwwQdlGIZCQkK0ZMkSnTlzRmfOnKl33H79+ikwMLDG95544gmVlZVp2rRpGjFihPr27asOHTooOztbX331lf7+978rOztbUuWS4ccee6xR7wygfSgqK9LGgxtlS7Jp48GNKi4vdtonokOE7h5yt6wWq0b3Hi0vs1cTVAoAAAAAcBePB3ZXX321Vq5cqVmzZik3N1dPP/10rTbR0dHauHHjZS09zcrK0pIlS7RkyZJa90wmk+bOnavXXntNvr6+dfZfu3atKioqJEm5ubmaOHGi0zE3b96scePG1fr+iRMn9Morr+iVV16pt++0adO0fPly+fn5OR0HQPtSWlGqzw9/roSkBK3dv1b5pflO+wT7BuuuwXfJGmvVzf1vlo+X+w7JAQAAAAA0LY8HdpI0adIk7dmzR0uWLNHGjRuVkZEhX19fRUVFafr06Xr88ccVEBDQ6OePHj1aL7zwgr788kvt379fWVlZMpvN6t69u+Li4jR37tx6D7xwt7feektbtmzRtm3bdPjwYWVnZys3N1dBQUHq1auXbrjhBs2ZM0cjRoxoknoAtA4V9gptObZFtiSb3kt5T2eLzjrt4+/tr0nRk2S1WDUxaqI6+Lj3cBwAAAAAQPMwGYbhfKdytCoZGRnq1auXJCk9PV09e/Zs5ooA1MUwDH2b8a1sSTat2rdKp/JPOe3jbfbWrVG3yhpr1Z0xdyrYz72H4gAAAAAAGsYTOUyTzLADAFQyDEM/Zv0oW5JNtiSbjl045rSP2WRWXN84WS1WTR08VeEdGnYYDgAAAACgdSGwA4AmkJqTqoS9CbIl27Q/e79LfW7odYOssVZNj52uyKBID1cIAAAAAGgpCOwAwEOOnT+mlckrZUuyadepXS71uTryalktVs2InaG+YX09WyAAAAAAoEUisAMANzqVf0qrk1fLlmzTN+nfuNQnJiJG8ZZ4zbTM1KBOgzxcIQAAAACgpSOwA4DLdLborN5PeV+2JJs2H90su2F32qdPaB9ZLVZZLVZd2fVKmUymJqgUAAAAANAaENgBQCPkl+brw/0fypZs06a0TSqzlzntExkUqRlDZshqser6ntcT0gEAAAAA6kRgBwAuKi4v1kcHP5ItyaYNqRtUVF7ktE9H/466e8jdslqsGttnrLzMXk1QKQAAAACgNSOwA4BLKKso0xdHvlBCUoI+SPlAeaV5TvsE+QZpyqApssZaNX7AePl6+TZBpQAAAACAtoLADgAuUmGv0NfHv1ZCUoLW7FujnKIcp338vPx0R/Qdslqsum3gbQrwCWiCSgEAAAAAbRGBHQBIMgxDO07sUMLeBK3at0on8k447eNt9taEARNkjbVq8qDJCvELaYJKAQAAAABtHYEdgHbLMAztPb1XtiSbbEk2HTl/xGkfk0wa13ecrBarpg6eqk4BnZqgUgAAAABAe0JgB6DdOZhzsDKkS7Zp35l9LvW5vuf1ssZaNT12uroHd/dwhQAAAACA9ozADkC7kH4hXSuTV8qWZNP3J793qc9Puv5E8ZZ4zYydqX4d+3m4QgAAAAAAKhHYAWizThec1urk1bIl2/T18a9d6jMwfGBlSGeZqSGdh3i4QgAAAAAAaiOwA9CmnC8+r/dT3pctyaYvjnwhu2F32qdXSC9ZLVZZLVZdHXm1TCZTE1QKAAAAAEDdCOwAtHoFpQVan7peCUkJ+iTtE5VWlDrt0yWwi2YMmSGrxaoRvUbIbDI3QaUAAAAAADhHYAegVSopL9EnaZ8oISlB61PXq7Cs0GmfMP8wTRs8TVaLVeP6jpO3mX8FAgAAAABaHv60CqDVKLeX68sjXyohKUEfpHygCyUXnPYJ8AnQ5JjJirfEa8KACfLz9muCSgEAAAAAaDwCOwAtmt2wa+vxrUpIStCafWt0pvCM0z6+Xr66beBtirfE6/aBtyvQN7AJKgUAAAAAwD0I7AC0OIZh6PuT3ythb4JWJq9UZl6m0z5eJi/d3P9mxVviNWXQFIX6hzZBpQAAAAAAuB+BHYAWI/l0shKSEmRLsunQuUNO25tk0ug+oxVvide0wdPUObBzE1QJAAAAAIBnEdgBaFaHzh7SyuSVSkhKUNLpJJf6DOsxTNZYq6bHTlfPkJ4erhAAAAAAgKZFYAegyWXmZmpV8iolJCVox4kdLvWxdLEo3hKvmbEzNSB8gIcrBAAAAACg+RDYAWgSZwrOaM2+NbIl25R4LFGGDKd9BnQcUBnSWWbK0sXSBFUCAAAAAND8COwAeMyF4gv6YP8HsiXZ9Pnhz1VhVDjt0yO4h6wWq6wWq67tdq1MJlMTVAoAAAAAQMtBYAfArQrLCrUhdYMSkhL00cGPVFpR6rRP54DOmj5kuqwWq0b2HimzydwElQIAAAAA0DIR2AG4bCXlJfr00KdKSErQugPrVFBW4LRPiF+Ipg6eqnhLvG7sd6O8zfzrCAAAAAAAicAOQCOV28v11dGvlLA3Qe/vf1/ni8877dPBu4PujLlT8ZZ43RJ1i/y9/T1fKAAAAAAArQyBHQCX2Q27tqVvU0JSglbvW63TBaed9vEx+2jiwImKt8Trjug7FOQb1ASVAgAAAADQehHYAbgkwzC069QuJexN0MrklUrPTXfax2wy66Z+NyneEq8pg6aoY4eOTVApAAAAAABtA4EdgDqlnElRQlKCbEk2HTx70KU+o3qPUrwlXncPuVtdArt4uEIAAAAAANomAjsADkfOHdHK5JVKSErQnqw9LvW5ttu1irfEa0bsDPUK7eXhCgEAAAAAaPsI7IB27kTeCa1OXq2EpAR9l/mdS30GdxqseEu8rBarBkYM9HCFAAAAAAC0LwR2QDuUU5ij91LeU0JSgrYc3SJDhtM+/cL6yWqxKt4SL0sXi0wmUxNUCgAAAABA+0NgB7QTuSW5+nD/h0pIStBnhz9Tub3caZ/uwd01M3amrBarrut+HSEdAAAAAABNgMAOaMOKyoq08eBGJSQlaGPqRpVUlDjtE9EhQtOHTJfVYtWo3qPkZfZqgkoBAAAAAEAVAjugjSmtKNVnhz5TQlKCPjzwofJL8532CfYN1l2D71K8JV439btJPl4+TVApAAAAAACoC4Ed0AZU2Cu05dgWJexN0Hsp7+lc8Tmnffy9/TUpepLiLfGaOHCi/L39m6BSAAAAAADgDIEd0EoZhqFvM75VQlKCVu9brVP5p5z28TH76JaoWxRvidek6EkK9gtugkoBAAAAAEBDENgBrYhhGPox60fZkmyyJdl07MIxp33MJrPi+sYp3hKvuwbfpfAO4U1QKQAAAAAAaCwCO6AVOJB9oDKkS7Zpf/Z+l/rc0OsGxVvidfeQuxUZFOnhCgEAAAAAgLsQ2AEt1LHzx7QyeaUSkhK0+9Rul/pcHXm1rBarZsbOVJ+wPp4tEAAAAAAANzAMyWRq7ipaFgI7oAU5lX9Kq5NXKyEpQdsytrnUJyYiRvGWeFktVsV0ivFwhQAAAAAAuKasTDp1Sjp5su5P1b3ISGnnzuautmUhsAOa2dmis3o/5X0lJCXoq6NfyW7YnfbpE9pHVotV8ZZ4/aTrT2TiryIAAAAAAE2ksLD+EK76JzvbteeVlnq23taoyQK7Y8eO6eWXX9bGjRuVnp4uPz8/DRgwQDNmzNBjjz2mgICAyx7jyJEjevnll/XZZ5/p2LFjstvt6t69u8aPH6/HHntMsbGxLj2nvLxcy5cv17/+9S/t379f+fn56t69u26++WY9+eSTLj8nOztbL7/8stauXaujR49Kkvr27aspU6Zo3rx5ioiIaOyropXLK8nTugPrlJCUoE2HNqncXu60T2RQpGYMmaH4K+I1vMdwQjoAAAAAgNsYhnT+vPPZcCdPSrm57h37zJnK2Xg+Pu59bmtmMgzD8PQg69ev16xZs5Rbz/+j0dHR2rhxo6Kioho9xtKlS/XEE0+otJ5Y1tfXV4sWLdLjjz9+yedkZ2frtttu044dO+q87+fnp1dffVUPPPDAJZ/z3XffacqUKTp16lSd97t166a1a9dq2LBhl3xOY2RkZKhXr16SpPT0dPXs2dPtY6DhisqK9HHax7Il2bQhdYOKyouc9uno31F3D7lb8ZZ4jekzRl5mryaoFAAAAADQVtjtlYGYs9lwp05JxcXNV2d6utRa4wtP5DAeD+x27dqlkSNHqqioSEFBQXrqqacUFxenoqIi2Ww2LVu2TFJlaLdz504FBwc3eAybzab4+HhJUmhoqObPn68bb7xRfn5+2rVrl55//nmlpaXJZDLJZrNpxowZdT6noqJC48aN09dffy1Jmjp1qh588EGFh4fru+++0zPPPKPTp0/LbDZrw4YNmjhxYp3PSU9P17XXXqszZ87I29tbv/rVr3THHXdIkjZs2KDFixervLxcXbp00ffff+/2QI3AruUoqyjT54c/ly3Zpg9SPlBeaZ7TPkG+QZoyaIqssVaNHzBevl6+TVApAAAAAKA1KS2tf3+46t/PypIqKpq3Vh8fqVu3/3wiI2t+3a2bdMUVkm8r/eNvqwzsxowZo8TERHl7e+vf//63RowYUeP+Cy+8oN/85jeSpD/84Q9auHBhg55fWFiofv366fTp0woKCtK2bdtksVhqtMnNzdWoUaO0d+9ede3aVWlpaQoKCqr1rH/84x+6//77JUmPPvqo/vrXv9a4n5aWpmuvvVa5ubmKiopSSkqKvL1rryqePXu23nnnHUnSqlWrNH369Br3V61apZkzZ0qS5syZozfffLNB7+wMgV3zqrBXKPF4omxJNq3Zt0Y5RTlO+/h5+emO6DtktVh1+8Db1cGnQxNUCgAAAABoaQoKXNsfLsf5HzU9LjCwdvBW1yc8vG2fAtvqArvt27dr+PDhkqSHH35Yf/vb32q1sdvtslgsSklJUVhYmE6fPi2fBixaXrNmjSMQW7BggZ555pk6233++ecaP368JOmVV16pc2nskCFDlJKSovDwcKWnp9e5r95zzz2np556SlLdYdypU6fUo0cP2e123XLLLfrkk0/qrOfWW2/Vpk2bZDablZmZqcjISJff2RkCu6ZnGIa2Z26XLcmmlckrdTL/pNM+3mZvTRgwQfGWeN0Zc6dC/EKaoFIAAAAAQFMzDOncOeez4U6elPKcL8zyuPDw+mfCVf80YpFkm+SJHMajh06sXbvWcT137tw625jNZs2ePVtPPfWUzp8/r82bN2vChAkuj7Gz2rm/9S1RlaRx48bJ399fxcXFWrNmTa3ALjU1VSkpKZKkGTNm1HsIxn333ecI7D744INagd26detkt1ee8lnfO1c9Z9OmTbLb7Vq3bp0eeuihS7wlWiLDMLT39F7ZkmyyJdl05PwRp31MMmlc33GKt8Rr6uCpigjg4BEAAAAAaK0qKlzfH66kpHlrNZulLl2cz4aLjJT8/Jq3Vng4sKvaCy4wMFDXXnttve3Gjh3ruN66dWuDArucanNAu3btWm87b29vhYeH68SJE9q2bZvKy8trLGetqvXiei4WGRmp6OhopaamauvWrbXuu/qci9+ZwK71OJhzULYkmxKSEpSSneJSn+t7Xi9rrFUzYmeoW3A3D1cIAAAAALgcJSW1Z77VtV9cVlbloQ7NydfXtdlwXbpIXpxj2Gp4NLCrmrEWFRVV515vVQYNGlSrj6uq70V34cKFetsZhuE4pba0tFRpaWk1xt23b1+d9dRXb2pqqtLT01VQUKDAwMBazwkNDb3kMtdu3bopJCREubm5DX7njIyMS94/edL5ckw0zPELx7UqeZUSkhL0w8kfXOpzZdcrZbVYNTN2pvp17OfhCgEAAAAAzuTnu7Y/3NmzzV2pFBTk2v5wHTu27f3h2iuPBXbFxcXKzs6WJKdrdzt27KjAwEAVFBQoPT29QeMMHjzYcb1ly5Z6Z/Lt2rVL+fn5jq+PHz9eI5irHoI5q7dqXbJhGMrIyFBMTEyt57iyXrlXr15KTk5u8DtXjQ/PysrP0pp9a5SQlKCt6bVnU9ZlYPhAxVviZbVYNbjzYOcdAAAAAACXxTAqAzZns+FOnqwM7Jpb1f5wzj51nJWJdsRjgV1etV0S6zqR9WJVgV1+A//pmThxory9vVVeXq7Fixdr9uzZ6tSpU402drtdCxYsqLe+htZbfUbdxfVWPcfVd67rGWg+54rO6YP9HyghKUFfHvlSdsP53OZeIb1ktVgVb4nXVZFXycRfbQAAAADAZauokE6fdm1/uNLS5q3VbJa6dnUewnXtyv5wcI1HZ9hV8fX1ddre7/9+xRYVFTVonF69eumRRx7Rq6++qszMTI0cOVLPP/+84uLi5Ovrq927d2vhwoXatGmTfH19Vfp//xRfPE5D6vWr9k9Xfc/x5Ds7m5F38uRJDRs2rEHPbM/yS/O1/sB6JSQl6JO0T1RmL3Pap0tgF80YMkPxV8Tr+p7Xy2wyN0GlAAAAAND6lZS4Nhvu9OmWsz+cs0/nzuwPB/fyWGDn7+/vuC51Ieou+b/jUjp06NDgsV588UUdPnxYH330kVJTUzVlypRabYYOHarrrrtOr7/+uiQp+KKzhy+ut/rX9dVaV73+/v4qLCz06Du743jg9q64vFifpH0iW5JN61PXq7Cs0GmfMP8wTRs8TfGWeI3tO1beZo9uAQkAAAAArUpenmv7w50719yVSsHBrp2Wyv5waC4eSxyqB2KuLPksKCiQ5NpS0ov5+flp/fr1+sc//qG//vWv+vHHH2UYhiSpS5cuevDBB/Xb3/5Wv/zlLx19OnbseMl6LxXYVdVaV73BwcEqLCz0+Duj4coqyvTlkS9lS7bp/ZT3lVuS67RPoE+gJg+aLGusVbdE3SJfL+czJwEAAACgrTAMKSfH+Wy4kyelan9UbjYREa7NiKu20xXQInl0hl1ERIRycnKcnmp67tw5R3jV2AMVzGazHnjgAT3wwAPKy8tTVlaWAgICFBkZKbO5crniwYMHHe2HDBlSo3/1WWsZGRm19sGrrmpJqslkqjXbrWfPnsrKynL6ztWfwyESnmM37Pr6+NeyJdm0et9qZRdmO+3j5+Wn2wbeJqvFqjui71CAT0ATVAoAAAAATae83PX94cqc7xrkUV5el94fLjLyP//rwu5UQKvg0TV9Q4YMUWJiotLS0lReXi5v77qH279/v+O6+qmvjRUcHFxryWtFRYV2794tSerfv3+tQK56gLd//35dddVV9T6/qt5evXrVOICi6jnff/+9Lly4oFOnTikyMrLOZ5w8eVK5uZUzvNzxzvgPwzC088RO2ZJsWpm8Upl5mU77eJm8NH7AeFljrZoyaIpC/UOboFIAAAAAcK/iYtdmw50+XTl7rjn5+bk2G65TJ/aHQ/vj0cBu1KhRSkxMVEFBgb7//nsNHz68znZbtmxxXI8cOdIjtWzevFk5OTmSpJkzZ9ZZa/V6rFZrnc85deqUUlNTJdVd66hRo/TOO+84nlPXWFX3qnjqndubpNNJsiXZZEuy6dC5Q07bm2TSmD5jZLVYdfeQu9UpoP5ZlQAAAADQXAzD9f3hzp9v7mqlkJBLz4Sr+oSFsT8cUB+TYXguU9++fbsjpHv44Yf1t7/9rVYbu90ui8WilJQUhYWF6fTp0/Lx8XFrHYZhaPTo0dq6dat8fHx04MAB9evXr1a7IUOGKCUlReHh4UpPT1dAQO2lkM8995yeeuopSdKqVas0ffr0GvdPnTqlHj16yG6365ZbbtEnn3xSZ0233nqrNm3aJLPZrMzMzHpn4jVGRkaGY5ltenp6mz6kIu1smlYmrZQt2aak00ku9RnWY5issVbNiJ2hHiE9PFwhAAAAANTNbv/P/nCXmg138qRU6PycPI/r1Mm1gxrYHw7tjSdyGI/OsBs2bJhGjx6txMRErVixQnPmzNGIESNqtFm0aJFSUlIkSfPmzasV1n311VeKi4uTJM2ZM0dvvvlmrXFycnIUFBQkPz+/WvcqKir05JNPauvWrZKkp556qs6wTpJ+/etf6/7779fZs2f1m9/8Rq+++mqN+4cOHdKzzz4rSYqKitJdd91V6xmRkZG655579M4772jTpk1as2aN7r777hptVq9erU2bNkmS7r33XreGde1BRm6GViWvki3Jph0ndrjU54ouV8hqscpqsap/x/4erhAAAABAe1ZeLmVlOZ8Nl5XVMvaHu3jm28Vfd+tWuYcc+8MBTcejgZ0kLVmyRCNHjlRRUZEmTJigp59+WnFxcSoqKpLNZtPSpUslSdHR0Zo/f36jxti8ebMef/xxWa1WjR07Vr1791ZxcbH27NmjpUuXOvaumzhxohYsWFDvc+bMmaN//OMf2rp1q/7617/q1KlTevDBB9WxY0dt375df/zjH5Wbmyuz2ayXX3653j35/vSnP+mTTz7RmTNnFB8fr507d+qOO+6QJG3YsEGLFi2SJHXu3FnPPPNMo965vTlTcEZr9q1RQlKCEo8nutQnKjxK1tjKkC62S6yHKwQAAADQ1hUVuTYb7syZ5t8fzt/f9f3h/u+cRgAtiEeXxFZZv369Zs2a5Thk4WLR0dHauHGjoqKiat1zZYbdmjVrai1Nrc5kMmnu3Ll67bXX6pyFV112drZuu+027dhR98wtPz8/vfrqq3rggQcu+ZzvvvtOU6ZM0alTp+q8HxkZqbVr19a7r9/laCtLYvNK8vReyntKSErQF4e/UIVR4bRPz5Cemhk7U/GWeF3T7RqZ2BABAAAAwCUYhpSb69r+cBcuNHe1UmjopWfCVX1CQ9kfDmgqrW5JbJVJkyZpz549WrJkiTZu3KiMjAz5+voqKipK06dP1+OPP17nfnGuGj16tF544QV9+eWX2r9/v7KysmQ2m9W9e3fFxcVp7ty5LgdjnTp10jfffKNly5bp3XffVUpKigoKCtS9e3fddNNNmjdvnmJjnc/WGj58uPbu3aslS5Zo7dq1Onr0qCSpX79+mjx5sn7xi18oIiKi0e/cHmTmZWruh3Odtusc0FnTh0yX1WLVyN4jZTbx10MAAABAe1d9fzhnn6Ki5q5W6tzZtf3hLuOPzgBakSaZYYem1VZm2EnS1X+/WrtP7a71/VC/UE0dPFVWi1U39rtR3uYmyZ4BAAAANLOyMtf3hysvb95avb3/MwvuUrPhunaV3Hz2IoAm1Gpn2AGNZY21OgK7AJ8A3Rlzp6yxVt0adav8vC+9vBkAAABA61G1P5yzT3Z28+8P16GDa/vDRUSwPxyAxiGwQ4tmtVj1TcY3irfEa1L0JAX6cj44AAAA0FoYRuW+b64EcfVsed6kqu8Pd6lPSAj7wwHwLAI7tGh9wvroQ+uHzV0GAAAAgGrs9sqZbq4EccXFzVuryeT6/nAdOjRvrQBQhcAOAAAAACCpcn+4U6dc2x+uoqJ5a62+P9ylPl26sD8cgNaHwA4AAAAA2rjCQtf3h2tuAQGuLUsND2d/OABtF4EdAAAAALRChiGdP+88hDt1qmXsDxcW5loQFxzM/nAAQGAHAAAAAC2I3S6dOeNaENcS9ofr0sX53nDsDwcADUNgBwAAAABNoLTU+f5wp061jP3hfHxc3x/Omz9VAoDb8a9WAAAAALgMBQWu7Q+Xk9PclUqBgc5nw3XrJkVEsCwVAJoTgR0AAAAAXMQwpHPnLj0Truo6L6+5q5U6dnR9fzgAQMtHYAcAAACg3aiocH1/uJKS5q3VbK57f7iLl6pGRkr+/s1bKwDAvQjsAAAAALR6JSV17w938feysioPdWhOvr6u7Q/XuTP7wwFAe8W//gEAAAC0WPn5ru0Pd/Zsc1cqBQU5nw3XrZsUHs7+cACASyOwAwAAANCkDKMyYHO2N9zJk5WBXXMLD3dtf7igoOauFADQVhDYAQAAAHCLigrp9GnX9ocrLW3eWs1mqWvX+mfBVZ8h5+fXvLUCANofAjsAAAAAl1RS4tpsuNOnW8b+cK7MhuvcWfLyat5aAQCoD4EdAAAA0E7l5bm2P9y5c81dqRQc7Hw2XLduUseO7A8HAGj9COwAAACANsQwpJycS8+Eq/oUFDR3tVJEhPPZcJGR7A8HAGhfCOwAAACAVqC83PX94crKmrfW6vvDOQvifH2bt1YAAFoiAjsAAACgGRUXuzYb7vTpytlzzcnPz7X94Tp1Yn84AAAuB4EdAAAA4GaG4fr+cOfPN3e1/9kfztknLIz94QAAaAoEdgAAAICL7Pb/7A9X30y4qk9hYXNXWznTzZVlqYGBzV0pAACojsAOAAAA7V55uZSV5Xw2XFZW8+8P5+Xl2v5wXbuyPxwAAK0VgR0AAADarKIi12bDnTnT/PvD+ftfehYc+8MBANB+ENgBAACgVTEMKTfXtf3hLlxo7mqlkBDX9ocLDWV/OAAAUInADgAAAC3G+fPS8ePOg7iiouauVOrc2bUZcQEBzV0pAABobQjsAAAA0KTKy6XDh6UDB2p+9u+vXJranLy9Xd8fzseneWsFAABtF4EdAAAAPCInpzKEuziYO3So6Q9u6NCh/hlw1T+dOklmc9PWBgAAcDECOwAAADRaaWnlbLm6grmcHM+PHxrq2v5wISHsDwcAAFoPAjsAAABckmFULlWtvnS16vrwYamiwr3jmUy194erb0Zchw7uHRsAAKAlILADAACAJKmkREpLqzuYO3/e/eN16iTFxNT8DBok9esn+fq6fzwAAIDWgsAOAACgHTEM6dSpug98OHpUstvdO56PjxQVVTuYi4mRIiLcOxYAAEBbQWAHAADQBhUVSQcP1g7mDhyQcnPdP16XLpWz4y4O5fr1qzx5FQAAAK7jt08AAACtlGFImZl1h3LHjlXedydfX2ngwLqDubAw944FAADQnhHYAQAAtHAFBVJqau1QLjVVys93/3jduv1nP7nqoVyfPpKXl/vHAwAAQE0EdgAAAC2A3S5lZNQ+7OHAASk93f3j+ftL0dG1g7noaCkkxP3jAQAAwHUEdgAAAE0oL6/mbLmqcC41tXLfOXfr2bP2KawxMVKvXpLZ7P7xAAAAcPkI7AAAANysokI6frz2KawHDkgnTrh/vICA2nvKDRpUud9cUJD7xwMAAIBnEdgBAAA00oULtfeV27+/8nTWkhL3j9enT+1gLiZG6tGD2XIAAABtCYEdAADAJZSXS0eP1h3MZWW5f7ygoLpPYR04sHImHQAAANo+AjsAAABJZ8/WDuUOHJDS0qTSUveOZTJJffvWHcx161Z5HwAAAO0XgR0AAGg3ysqkI0fqPon1zBn3jxcaWvuwh5gYKSqq8pRWAAAAoC4EdgAAoM3Jzq592MOBA9KhQ5VLXN3Jy0vq16/uYK5LF2bLAQAAoOEI7AAAQKtUWloZwNUVzJ096/7xwsNrn8IaEyMNGCD5+rp/PAAAALRfBHYAAKDFMgzp9Om6D3w4ckSqqHDveN7elQFcXcFcp07uHQsAAACoT5MFdseOHdPLL7+sjRs3Kj09XX5+fhowYIBmzJihxx57TAFuOPbs6NGjev311/X555/r0KFDKigoUHBwsAYNGqRbb71VjzzyiLp06VJn34ULF+q///u/GzTeH/7wBy1cuLBWDf369XOp/5w5c/Tmm282aEwAANqi4uLKwx3qCuYuXHD/eJ071z7sYdCgyqWtPj7uHw8AAABoiCYJ7NavX69Zs2YpNzfX8b3CwkLt3LlTO3fu1PLly7Vx40ZFRUU1eox33nlHDz/8sIqKimp8/9y5c9q2bZu2bdumJUuWyGazafz48Y0ep7qYmBi3PAcAgPbAMKSTJ+s+ifXoUclud+94Pj6VhzvUdRJreLh7xwIAAADcyWQYhuHJAXbt2qWRI0eqqKhIQUFBeuqppxQXF6eioiLZbDYtW7ZMkhQdHa2dO3cqODi4wWNs3bpVY8aMkd1ul9ls1pw5czR58mR1795dx48f11tvvaX169dLkjp06KCkpCT179+/xjNOnz6t06dPX3KciooKjRkzRrm5uQoJCdGpU6fUoUOHGm2qz7B75plnNHny5Hqf17FjR/Xo0aPB7+tMRkaGevXqJUlKT09Xz5493T4GAAD1KSqSDh6sfQrrgQNSXp77x+vatfZhDzExUt++lUtcAQAAAE/yRA7j8d/Gzps3T0VFRfL29tann36qESNGOO7deOONGjhwoH7zm98oNTVVixYtqrXE1BXPPvus7P/31/KvvPKKHn30Uce96667TtOmTdP8+fO1ePFiFRUVafHixXr11VdrPKNLly71Lpet8vHHHztmCU6fPr1WWHexHj16yGKxNPh9AABo6QxDysys+8CH48cr77uTn580cGDtYC46WgoLc+9YAAAAQHPzaGC3fft2JSYmSpLuv//+GmFdlfnz5+uNN95QSkqKlixZogULFsingZvHfPPNN5KkiIiIGmFddb///e+1ePFiSdK2bdsa9Pwqb7/9tuN69uzZjXoGAACtSUGBlJpaO5hLTa28527du9c+7CEmRurdW/Lycv94AAAAQEvk0cBu7dq1juu5c+fW2cZsNmv27Nl66qmndP78eW3evFkTJkxo0DilpaWSdMnDHkJDQ9WpUydlZ2c72jdEbm6uPvzwQ8c4o0ePbvAzAABoiex2KT299mEPBw5IGRnuH69Dh8qZcRcf+BAdLTViZwwAAACgzfFoYPf1119LkgIDA3XttdfW227s2LGO661btzY4sIuJidEPP/ygI0eO1NsmNzdX2dnZjvYNtXr1aseBFvfee69MJlODnwEAQHPKy6v7FNaDByv3nXO3Xr3qPom1Z0/JbHb/eAAAAEBb4dHALiUlRZIUFRUl70vs+jxo0KBafRrikUce0UMPPaScnBz97W9/0yOPPFKrzR//+Mca7RuqMcthX3nlFT3zzDPKyMiQn5+fevbsqdGjR+uhhx7SNddc0+AaqmQ4me5w8uTJRj8bANC6VVRIx47VHcx54j8PgYG1Q7mqveUCA90/HgAAANAeeCywKy4udsxoc3Y6RseOHRUYGKiCggKlp6c3eKyf/exn+vrrr/X222/rscce0/fff68777xT3bp10/Hjx/XOO+84lucuWLBAN998c4Oef/ToUcdefCNHjtSAAQNc6vfDDz84rktKSrRv3z7t27dPf//73/Xwww9ryZIl8vPza1AtkhwnjwAA2q/z52uHcgcOVM6WKylx71gmk9SnT93BXI8elfcBAAAAuI/HAru8vDzHdVBQkNP2VYFdfn5+g8fy8vLSW2+9pUmTJunPf/6zli9fruXLl9doExcXp6effrrBYZ0kvfPOOzL+77i7OXPmOG0fFhamu+66S+PGjdPAgQPl7++vkydP6tNPP9WKFSuUn5+vv//978rLy9O//vWvBtcDAGgfysulo0drn8J64ICUleX+8YKDax/2EBNTeTqrk4PRAQAAALiRR2fYVfH19XXavmqmWVEjN9FJSUnR22+/rb1799Z5f9u2bVqxYoUGDx6sHj16NOjZ//znPyVJ/v7+mjFjxiXbdu/eXZmZmQoICKjx/auvvlq33XabHnvsMd188806fvy43n33Xc2cOVN33nlng+pxNgvx5MmTGjZsWIOeCQBoPmfP1j7s4cABKS1NKitz71hms9S3b90nsUZGMlsOAAAAaAk8Ftj5+/s7rl05lbXk/9bvdGjEX+EnJiZq0qRJunDhgvr06aNnnnlG48ePV3h4uLKysrRu3Tr97ne/k81m07///W99+umnio2NdenZ3377rVJTUyVJkydPVmho6CXb+/r6XjKgHDhwoP75z39qzJgxkir3uWtoYOdsiTEAoOUpK5MOH647mPu/HSTcKiys9mEPMTFSVJTUiN0YAAAAADQhjwV2wcHBjmtXlrkWFBRIcm35bHUlJSWKj4/XhQsXFBkZqW+//VaRkZGO+z179tSjjz6qsWPHaujQoTpx4oTmzJmjnTt3uvT8xhw24czo0aM1ZMgQ7du3T19//bXsdrvMHJcHAK2eYVSGb3Ud+HD4cOUSV3fy8pL69687mOvcmdlyAAAAQGvl0Rl2ERERysnJcXqq6blz5xyBXUMPVPjkk0+UmZkpSXriiSdqhHXVxcbGatasWVq+fLm+//57/fjjj7ryyisv+ezS0lKtXLlSktS1a1fdcsstDartUqoCu+LiYuXk5Khz585uezYAwLNKSyuXq9YVzJ075/7xIiJqH/YwaFBlWOfCrhMAAAAAWhmPBXZSZSiVmJiotLQ0lZeXy9u77uH279/vuB48eHCDxkhJSXFcX3PNNZdse+211zoOo9i/f7/TwG7Dhg06e/asJOmee+6Rl5dXg2q7FBPTHgCgRTOMyoMd6jqJ9fBhyW5373je3pXLVes6ibVTJ/eOBQAAAKBl82hgN2rUKCUmJqqgoEDff/+9hg8fXme7LVu2OK5HjhzZoDGqh4DlTtYalVXbubu+8LA6TyyHrbJv3z5JlYdtREREuPXZAADXFRdXzpa7+BTWAwekCxfcP17nzrVPYY2Jkfr1k3x83D8eAAAAgNbHo4HdlClT9Oyzz0qS3njjjToDO7vd7gjGwsLCFBcX16Ax+vXr57hOTEzUHXfcUW/b6sFg9X51ycnJ0UcffSRJuvLKK53OxmuIrVu3Kjk5WVJlqMn+dQDgWYYhnTxZ+7CHAweko0cr77uTr2/lbLm6grmOHd07FgAAAIC2x6OB3bBhwzR69GglJiZqxYoVmjNnjkaMGFGjzaJFixzLWufNmyefi6YXfPXVV44Qb86cOXrzzTdr3L/pppsUEBCgwsJCvf7665o1a5auuOKKWrV8/PHH+uCDDyRJPXr00FVXXXXJ2hMSEhwz8hoyu27t2rWaPHlyvUte09LS9NOf/tTx9aOPPuryswEAl1ZYKB08WPsk1tRUKS/P/eNFRtY86KHq07dv5YEQAAAAANAYHg3sJGnJkiUaOXKkioqKNGHCBD399NOKi4tTUVGRbDabli5dKkmKjo7W/PnzG/z8sLAw/dd//Zd+//vfKy8vTzfccIOeeOIJjR8/Xh07dlRWVpY+/PBDLVu2TPb/23DoueeeczqrrWrWn7e3t+655x6X67nrrrsUFRWlqVOnatiwYerZs6f8/Px08uRJbdq0SStWrHCcmjtjxgxNnTq1we8MAO2ZYUgZGbUPezhwQDp+3P3j+ftLAwfWPoU1OloKDXX/eAAAAADg8cDu6quv1sqVKzVr1izl5ubq6aefrtUmOjpaGzduVHBwcKPG+O1vf6uzZ89qyZIlys/P17PPPutYiludj4+P/vznP2vWrFmXfN7+/fu1Y8cOSdKECRPUtWvXBtWTlpam559//pJtfv7zn+ull15q0HMBoD3Jz6+cGXdxMJeaWjmTzt169Kj7JNbevSV2LgAAAADQlDwe2EnSpEmTtGfPHi1ZskQbN25URkaGfH19FRUVpenTp+vxxx9XQEBAo59vMpn00ksvadasWVq+fLm+/vprHTt2TIWFhQoKClJUVJTGjh2rhx9+WNHR0U6f98477ziuG3rYxLp167Rt2zZ99913OnbsmLKzs1VQUKCQkBD1799fo0eP1s9+9jNZLJYGvycAtDV2e+WsuIsPe9i/X8rMdP94AQGVM+MuDuaio6VG/p0RAAAAALidyTDcvdU2mltGRoZ69eolSUpPT1fPnj2buSIA7V1ubuXMuIsPfDh4UCoqcv94vXvXDuViYqSePZktBwAAAMC9PJHDNMkMOwBA21dRIR07VvdJrCdPun+8oKC6Q7mBA6XAQPePBwAAAABNhcAOANAg58/XPuzhwAEpLU0qKXHvWCaT1KdP3Sexdu9eeR8AAAAA2hoCOwBALeXl0pEjdQdzp0+7f7yQkNqnsMbESFFRUocO7h8PAAAAAFoyAjsAaMdycmof9nDggHTokFRW5t6xzGapX7+6g7muXZktBwAAAABVCOwAoI0rK6sM4Oo6iTUnx/3jdexYc+lqVTA3YIDk5+f+8QAAAACgrSGwA4A2wDCk7Ozahz1UzZarqHDveF5elQHcxQc+DBokderEbDkAAAAAuBwEdgDQipSUVAZwdQVz5865f7yIiNqHPcTESP37S76+7h8PAAAAAEBgBwAtjmFIWVm1D3s4cKDyIAi73b3j+fhUzparK5iLiHDvWAAAAAAA5wjsAKCZFBdLBw/WfRJrbq77x+vSpfZhDzExlQdBePNfAwAAAABoMfgjGgB4kGFIJ07UfRLrsWOV993J11caOLDuYC4szL1jAQAAAAA8g8AOANygsFBKTa0dzKWmSvn57h+vW7e6T2Lt06fyQAgAAAAAQOtFYAcALrLbpYyM2oc97N8vpae7fzx/fyk6unYwFx0thYS4fzwAAAAAQMtAYAcAF8nPrx3KHThQOVuusND94/XsWfuwh0GDpF69JLPZ/eMBAAAAAFo2AjsA7ZLdLh0/XvdJrJmZ7h8vIKB2KBcTUzlbLijI/eMBAAAAAFovAjsAbVpubt2nsB48WHlKq7v17l37sIeYGKlHD2bLAQAAAABcQ2AHoNWrqJCOHq07mDt1yv3jBQXVPuwhJqbydNaAAPePBwAAAABoXwjsALQa587VPuzhwAEpLU0qLXXvWCaT1Ldv3cFct26V9wEAAAAA8AQCOwAtSnm5dPhw3Sexnjnj/vFCQ2sf9hATI0VFVZ7SCgAAAABAUyOwA9AscnJqH/ZQNVuuvNy9Y5nNUv/+dQdzXbowWw4AAAAA0LIQ2AHwmNLSytlydQVzOTnuH69jx7oPfBgwQPLzc/94AAAAAAB4AoEdgMtiGJVLVS8+7OHAgcqwrqLCveN5e1cGcBeHcjExUqdOzJYDAAAAALR+BHYAXFJSUrlcta6TWM+fd/94nTrVPVuuf3/Jx8f94wEAAAAA0FIQ2AFwMAzp1Km6T2I9elSy2907no9P5eEOF5/CGhMjhYe7dywAAAAAAFoLAjugHSoqkg4erB3MpaZKubnuH69r17oPfOjbt3KJKwAAAAAA+A/+qAy0UYYhZWbWPuxh/37p+PHK++7k5ycNHFg7mIuOlsLC3DsWAAAAAABtGYEd0MoVFFTOjLs4mEtNlfLz3T9e9+6195UbNEjq3Vvy8nL/eAAAAAAAtDcEdkArYLdLGRl1n8Sanu7+8Tp0qJwZd3EwFx0thYS4fzwAAAAAAPAfBHZAC5KX95/ZctWDudTUyn3n3K1nz7pPYu3VSzKb3T8eAAAAgP+fvTuPj6q6/z/+nux7AoEQdoQQSAQ3NmlEiAuoCAKJUpWKtCqtYm1La6tWpFWrrcV+sbVFEHEXbQYQjIqKgGwCoQhohn0LEEIChOz7/f0xv4xgkslkMpMMmdfz8bgPbphz7v3c3NxM8s499wBA4wjsgBZWXW19htwPZ2Hds0c6ccL1+wsNtd4Z98NgLj7e+hoAAAAAAPAsBHaAm5w7V3eyhz17rLOzlpe7dl8mk/UZcufPwFq7dO1qfR0AAAAAAFwcCOyAZqiqkg4frn8m1pwc1+8vPPzCiR5q1/v2tT53DgAAAAAAXPwI7AAHnDlTN5Tbs0fav1+qqHDtvnx8pF696s7C2q+fFBvL3XIAAAAAALR1BHbA/1dZKR06VHcW1j17pNxc1+8vKqruZA/9+klxcVJQkOv3BwAAAAAALg4EdvA6eXl1J3vYs0c6cMA6xNWVfH2l3r3rD+ZiYrhbDgAAAAAA1EVghzaposIawNUXzJ054/r9tW9fd7KHfv2kPn2kgADX7w8AAAAAALRdBHa4aBmGdOpU/TOxHjokVVe7dn9+ftYArr5grkMH1+4LAAAAAAB4LwI7eLyyMuvkDvUFc+fOuX5/HTvWPxPrJZdI/v6u3x8AAAAAAMD5COzgsSorpYQE691yNTWu3XZAgHVyh/qCuXbtXLsvAAAAAACApiCwg8fy97c+i645YV1s7IVDV2uDuZ49rUNcAQAAAAAAPA2RBTxav35SVpb9NkFBUt++dYO5+HgpMrJl6gQAAAAAAHAVAjt4tH79pC++sK537Vp3sod+/aQePSRf39atEwAAAAAAwFUI7ODRfvlLado0691y4eGtXQ0AAAAAAID7EdjBo8XHt3YFAAAAAAAALcuntQsAAAAAAAAA8D0COwAAAAAAAMCDtFhgd+TIEc2cOVP9+/dXaGio2rdvryFDhuiFF15QSUmJS/Zx+PBh/f73v9egQYMUFRUlf39/tW/fXj/60Y/05z//WadOnbLbf9SoUTKZTA4tjvj22281ffp09enTR8HBwerYsaNGjBihefPmqaqqyhWHDAAAAAAAgDbGZBiG4e6drFixQlOmTFFBQUG9r8fHxys9PV1xcXFO7+Ott97S9OnTVVpa2mCb9u3ba/HixbrxxhvrfX3UqFFau3atQ/tr7NO2YMECzZgxQxUVFfW+PnToUKWnp6tDhw4O7a8pjh07pu7du0uSsrKy1K1bN5fvAwAAAAAAAO7JYdw+6cT27ds1efJklZaWKiwsTI899piSk5NVWlqqxYsXa8GCBdq7d6/Gjh2rjIwMhTsxFeiGDRt07733qqamRj4+Ppo6dapuu+02denSRUePHtUbb7yhFStW6MyZM7rtttv07bffqnfv3g1ub/DgwVq0aJHTx/zxxx/r5z//uWpqatSpUyc98cQTGjZsmM6cOaMFCxZoyZIl2rJliyZOnKg1a9bI19fX6X0BAAAAAACgbXF7YPfII4+otLRUfn5++uyzzzR8+HDba9ddd5369u2rRx99VHv37tWcOXM0e/bsJu/jueeeU01NjSTpn//8px588EHba0OGDFFKSopmzpypF198UaWlpXrxxRf1r3/9q8HthYaGasCAAU2uQ5IqKyv18MMPq6amRhEREdqwYYP69Olje/2mm27SQw89pH//+99av3693nrrLd17771O7QsAAAAAAABtj1ufYbdlyxatW7dOkvSzn/3sgrCu1syZM5WQkCBJmjt3riorK5u8n40bN0qSoqOjLwjrzjdr1izb+qZNm5q8D0ctXbpUBw8elCQ99thjF4R1tV544QW1a9fOtg4AAAAAAADUcmtgt2zZMtv6tGnT6i/Ax0f33HOPJCk/P1+rV69u8n5qnxN3ySWXNNgmMjLS9ry4hp4r5wrnH3NDd86FhITojjvukCRlZmZq7969bqsHAAAAAAAAFxe3Bnbr16+XZB1iOmjQoAbbjRw50ra+YcOGJu+nX79+kqRDhw412KagoEB5eXkXtHeH2mPu16+fYmNjG2zX3GMGAAAAAABA2+TWwM5isUiS4uLi5OfX8OPy+vfvX6dPU/z85z+XJJ0+fVrz5s2rt83TTz9dp31Ddu/erWHDhikqKkpBQUHq1q2bbrvtNr355pt2h+wWFRUpKytL0oXHVJ/mHPOxY8fsLtnZ2U3aHgAAAAAAADyH2yadKCsrs93R1th0tu3atVNoaKiKi4ttgVdT/PSnP9X69ev15ptv6qGHHtK2bds0fvx4de7cWUePHtVbb71lG6r6xBNP6IYbbrC7vZycHOXk5Ng+Pn78uI4fP67ly5frr3/9q9LS0mzP3TvfsWPHbOuNHXPtdL+SmnzM5/dtDOEdAAAAAACA+5yfvVRVVblkm24L7AoLC23rYWFhjbavDeyKioqavC9fX1+98cYbGjdunP7yl7/o1Vdf1auvvnpBm+TkZD3++ON2wzofHx9df/31uuWWW3T55ZcrOjpahYWF+t///qdXXnlFFotFmZmZSk5O1pYtW9SjR48L+jflmENDQ23rzhyzo4YOHeq2bQMAAAAAAOB7ubm56tWrV7O349Y77GoFBAQ02j4wMFCSVFpa6tT+LBaL3nzzTe3atave1zdt2qSFCxcqISFBXbt2rbfNkiVLFBUVVef/R4wYoQcffFD333+/3njjDeXk5OhXv/qVlixZckG7phxz7fFKTT/mxu7I++abbzRu3LgmbRMAAAAAAACewW2BXVBQkG3dkVlZy8vLJUnBwcFN3te6des0btw4nTt3Tj179tQzzzyjG2+8Ue3bt1dOTo6WL1+uJ598UosXL9ZXX32lzz77TJdeemmd7dQX1tXy9/fXq6++qq+//lp79uzR0qVLdfz48QvCv6Ycc+3xSk0/5saG23bo0EFbtmyRJHXs2NHu8wM9XXZ2tu0uwS1btqhz586tXBFaEuffe3HuvRvn33tx7r0b5997ce69F+feu7Wl819VVaXc3FxJ0sCBA12yTbclOeHh4bZ1R4Z8FhcXS3Js+Oz5ysvLdeedd+rcuXOKjY3V119/fcHsrN26ddODDz6okSNHavDgwTpx4oSmTp2qjIyMJu1Hkvz8/PSzn/1Mjz76qCRp7dq1uuuuu2yvN+WYa49XavoxNyYoKEhDhgxx6TY9QefOnRsNK9F2cf69F+feu3H+vRfn3rtx/r0X5957ce69W1s4/64YBns+t80SGxQUpOjoaEkXTsZQn7Nnz9oCrKZMqCBJn376qY4fPy5Jevjhhy8I68536aWXasqUKZKkbdu2aceOHU3aT63ExETbeu1+a51/t11jx3z+sNamHjMAAAAAAADaLrcFdtL34db+/fvtzpKxe/du23p9s6/aY7FYbOtXXXWV3baDBg2qd59NYTKZGnwtPDzcFr41tv3mHDMAAAAAAADaLrcGdtdcc40k6/DPbdu2Ndhu7dq1tvWkpKQm7eP857M1NnVuZWVlvf2aIjMz07bepUuXOq/XHvOePXt08uTJBrfTnGMGAAAAAABA2+XWwG7ChAm29UWLFtXbpqamRm+++aYk66QPycnJTdrHJZdcYltft26d3bbnh2Tn93NUVVWVXnvtNdvH1157bZ025x/z66+/Xu92SkpK9MEHH0iy3oUYHx/f5FoAAAAAAADQNrk1sBs6dKhGjBghSVq4cKE2bdpUp82cOXNsw1ofeeQR+fv7X/D6mjVrZDKZZDKZdO+999bpf/311yskJESS9J///Ee7du2qt5ZPPvlES5culWR91twVV1xxweurV69Wfn5+g8dSWVmp++67z1bruHHj6n323MSJE9W7d29J0nPPPacDBw7UafO73/1OZ8+eta0DAAAAAAAAtdw2S2ytuXPnKikpSaWlpRo9erQef/xxJScnq7S0VIsXL9b8+fMlSfHx8Zo5c2aTtx8VFaU//OEPmjVrlgoLC/WjH/1IDz/8sG688Ua1a9dOOTk5+vDDD7VgwQLV1NRIkp5//nn5+FyYVb7xxhsaP368xo8fr1GjRqlfv36KiIhQUVGRtm3bpvnz59uGw8bExGju3Ln11uPv769//vOfGjdunAoKCpSUlKQ//vGPGjp0qM6ePasFCxbIbDZLsg6f/clPftLkYwYAAAAAAEDb5fbA7sorr9T777+vKVOmqKCgQI8//nidNvHx8UpPT1d4eLhT+/jjH/+oM2fOaO7cuSoqKtJzzz2n5557rk47f39//eUvf7HNFvtDRUVFevfdd/Xuu+82uK+BAwdq8eLFdofU3nLLLZo3b55mzJihnJwcPfzww3XaDB06VEuXLpWvr68DRwgAAAAAAABvYTIMw2iJHR05ckRz585Venq6jh07poCAAMXFxen222/XjBkzbMNaf2jNmjW259pNnTq1wefCSdK2bdv06quvav369Tpy5IhKSkoUFhamuLg4jRw5UtOnT2/weXEWi0UrV67Upk2blJmZqdzcXJ05c0aBgYHq1KmTBg8erNTUVE2cONHhkO3bb7/VSy+9pFWrVunEiRMKDQ1VQkKC7r77bt13331OT3wBAAAAAACAtqvFAjsAAAAAAAAAjXPrpBMAAAAAAAAAmobADgAAAAAAAPAgBHYAAAAAAACAByGwAwAAAAAAADwIgR0AAAAAAADgQQjsAAAAAAAAAA9CYAcAAAAAAAB4EAI7AAAAAAAAwIMQ2AEAAAAAAAAehMAOzXbkyBHNnDlT/fv3V2hoqNq3b68hQ4bohRdeUElJicv288knn2jixInq1q2bAgMD1a1bN02cOFGffPKJw9uoqqrSvHnzNGLECHXs2FHBwcHq06ePpk+fru+++85ltXoTd57/kpISLVmyRL/4xS80ZMgQtWvXTv7+/oqOjtbw4cM1e/ZsnTx5stHtjBo1SiaTyaEFjnPnuX/99dcdPmevv/56o9srKSnR3/72Nw0ZMkTt27dXaGio+vfvr5kzZ+rIkSPNqtVbuev8Hz582OFzX7v06tWr3m1x7bvOqVOn9NFHH2nWrFm6+eab1aFDB9vn7t5773XLPt977z2NHj1asbGxCgoKUs+ePTVlyhRt2rTJ4W1w7btGS53/c+fO6Z133tG0adN0+eWXKzIyUv7+/urYsaOSk5M1Z84c5efnN7qdXr16Net7B77XUud+9uzZDn+/XrNmTaPby8vL06xZs3TZZZcpIiJCERERuuyyyzRr1iydPn3aZXW3dS1x/tesWdPk9/1Ro0bVuy2ufdfJyMjQn//8Z40ePdr2+3dYWJji4+M1bdo0rV+/3uX75H2/HgbQDMuXLzciIiIMSfUu8fHxxr59+5q1j+rqauNnP/tZg/uQZNx3331GdXW13e3k5uYaQ4YMaXAbgYGBxoIFC5pVq7dx5/nfsWOHERYWZve8SzIiIiKMxYsX293WyJEjG91O7QLHuPvaX7RokcPnbNGiRXa3tW/fPqNv3752v4ZWrFjhdK3eyJ3n/9ChQw6f+9pl9OjR9W6La9917H3upk6d6tJ9lZSUGLfcckuD+/Px8TFmz57d6Ha49l2nJc7/xx9/bAQGBjZ6rcbGxhpffvml3W317NnToeu+Z8+eLqm9LWupa/+pp55y+Pv16tWr7W7r66+/NmJjYxvs37lzZ2Pz5s0uq70ta4nzv3r16ia/7z/wwAP1botr3zVGjBjh0OfxnnvuMcrLy5u9P973G+YnwEnbt2/X5MmTVVpaqrCwMD322GNKTk5WaWmpFi9erAULFmjv3r0aO3asMjIyFB4e7tR+nnjiCS1cuFCSdOWVV+rRRx9Vnz59dODAAf3tb3/T9u3b9eqrr6pjx476y1/+Uu82qqurNXHiRG3dulWSNGnSJN1///1q3769Nm/erGeeeUanTp3S9OnT1bVrV918883OfVK8iLvPf0FBgYqKiiRJSUlJuvXWWzV48GBFR0crNzdXS5Ys0YIFC1RQUKC7775bERERjZ63wYMHa9GiRU4fM6xa6tqvtXLlSnXp0qXB17t169bga4WFhRo7dqz27dsnSbr//vv14x//WMHBwVq9erWee+45FRQUaPLkydqwYYOuuOKKZtXqDdx9/rt27apdu3Y12u65557Tu+++K0maOnWq3bZc+67Vo0cP9e/fX5999plbtv/Tn/5UH3/8sSQpOTlZjzzyiLp06aJdu3bpL3/5iw4cOKDZs2erc+fOeuCBB+rdBte++7jr/J8+fVrl5eXy8fHRjTfeqJtuukmXX365oqKidOzYMb3zzjt6//33dfLkSd16660OnbfbbrtNzzzzTIOvBwQEuPQY2jp3X/u1GnsPuOSSSxp8LSsrS+PGjVNubq78/Pz0m9/8Rrfeeqsk6aOPPtKLL76o7OxsjRs3Ttu2bbP7MwQu5K7zP2TIEIfe92fMmKG1a9dKavx9n2u/eU6cOCFJ6tKli26//XaNGDFCPXr0UHV1tTZt2qQ5c+bo+PHjevPNN1VZWWn7ecxZvO/b0dqJIS5etcm7n5+fsXHjxjqv/+1vf7Ol2U899ZRT+9izZ4/h5+dnSDIGDx5slJSUXPB6cXGxMXjwYFsdDd3RsXDhQlstDz74YJ3X9+3bZ7tbJC4uzqisrHSqXm/i7vO/YcMG44477jC+++67BtssW7bMMJlMhiSjT58+Rk1NTb3tau+yGTlyZJPrQF0tce2ff4fdoUOHnK71ySeftG3nb3/7W53XN2zYYPsew9eHY1ri/DemqqrK6NKliyHJCA8Pr/PeUItr33VmzZplrFixwjh58qRhGBfeCenKu2xWrVpl2+64ceOMqqqqC17Pzc01evToYUgyoqKijDNnztS7Ha5912qJ87948WJj+vTpxpEjRxps89JLL9n2m5yc3GC72rtsXH33pzdqqWv//DvsmuMnP/mJbTsffPBBndfff/99t9TfVrXU+W/M2bNnbXfgxsXFNdiOa981xo4da7z//vt13oNr5ebmGvHx8bavhbVr1zq9L9737SOwg1M2b95suyCmT59eb5vq6mojISHBdnFVVFQ0eT+/+MUvbPvZtGlTvW02bdpkN4wzDMNWR/v27Y3i4uJ62zz33HN23+DxvZY6/45ISUmx1bJt27Z62/BLu+u01Ll3RWBXUVFhREZGGpKMhISEBofNT58+3bavLVu2OLUvb+Ep1/6nn35qq2PatGkNtuPadx93/dJ288032wLhrKysetu89957dn8o59p3v9b6pd0wDNsfan18fIzc3Nx62/BLu/t4cmCXnZ1t+Pj4GJKMMWPGNNhuzJgxtq+h7Oxsp/fnjVrr2p83b55tv3/6058abMe133JWrFhhOycPP/yw09vhfd8+Jp2AU5YtW2ZbnzZtWr1tfHx8dM8990iS8vPztXr16ibtwzAMffjhh5Kk/v376+qrr6633dVXX61+/fpJkj788EMZhnHB63v37pXFYpEk3XHHHQoJCal3O+c/OHXp0qVNqtXbtMT5d1RycrJt/cCBA27ZB77nSee+MatXr9a5c+ckWYdO+PjU/5bHte84Tzn/b775pm29sWExuHgUFhZq1apVkqQbbrihwaFqkyZNUkREhKT6r1mu/bat9mHzNTU1OnToUOsWA4+yfPly1dTUSGr4PUr6/tqvqanR8uXLW6I0NFPt+77JZLL9jIHW5YrfwXjfbxyBHZxSOytMaGioBg0a1GC7kSNH2tY3bNjQpH0cOnTINn7+/O3Y28/x48d1+PDhemttbDuxsbGKj493qlZv0xLn31Hl5eW2dV9fX7fsA9/zpHPfGEev/cGDB9uCfK59+zzh/BcWFtqCw169eunaa6916fbRerZu3aqKigpJ9q/ZgIAA2x/xtm7dqsrKygte59pv23jfR0McvfY94WcUOO7AgQPauHGjJGnEiBHM8OohXPG9mPf9xhHYwSm1d6zFxcXJz6/huUv69+9fp4+jMjMz691OU/fjzHaysrJUXFzscK3epiXOv6NqHz4rSQkJCXbb7t69W8OGDVNUVJSCgoLUrVs33XbbbbYHpqJxrXHup02bpi5duiggIEAdOnTQ1VdfrT/+8Y86fvy43X6OXvt+fn6Ki4tzSa1tnSdc+2lpaSopKZEk/eQnP5HJZGq0D9f+xcGZ9+uqqirbA6abuh2u/YtT7fu+v7+/7fw15KuvvtIVV1yh8PBwhYSE6JJLLtHkyZO1bNmyOiMy4DlGjx6tmJgYBQQEKCYmRqNGjdLzzz+vs2fP2u1Xe+1HRkYqNja2wXadO3e23a3Dte/5nLmrnmvf/ZryO1hDeN9vHIEdmqysrEx5eXmS7M/OKEnt2rVTaGioJGsI1hTHjh2zrTe2n+7du9vWf7gfZ7ZjGMYF/fC9ljr/jtixY4fS09MlSQMHDmz0zSInJ0dbtmzRuXPnVF5eruPHj2v58uWaOnWqrrjiiovmG3draa1zv2bNGmVnZ6uyslKnT5/W5s2b9eyzzyouLk6vvPJKg/1qr+HQ0FBFRUXZ3UfttZ+bm3vBXwzxPU+59s//wd3RYTFc+xcHV7/vc+23Penp6dq5c6ckacyYMbbQpSGHDh3Sjh07VFRUpNLSUh0+fFgffPCBJk6cqBEjRjT6hx+0js8//1y5ubmqrKxUbm6u1q5dq8cee0y9e/e2PS6nPrXXviMzv9Ze++74+RSuYxiG3n77bUlScHCwbr/9dof6ce27V01NjZ5//nnbx3fccYdT2+F9v3EN/3kcaEBhYaFtPSwsrNH2oaGhKi4uVlFRkdv2U/uLoaQ6+3HVdmDVUue/MeXl5brvvvtUXV0tSXr22WcbbOvj46Prr79et9xyiy6//HJFR0ersLBQ//vf//TKK6/IYrEoMzNTycnJ2rJli3r06OHSWtuKlj73vXv31qRJkzR8+HDbm+vBgwdlNpuVlpamsrIy/fznP5fJZKp3ivfaeh2ttVZRUZECAwOdqrkt84Rr/+jRo7a/6P7oRz9q9O4arv2Li6vf97n225YzZ87ooYcekmQdfvXnP/+5wbYBAQEaP368Ro8erQEDBigyMlL5+fnatGmT/vOf/ygrK0sbNmzQjTfeqE2bNikyMrKlDgN2DBw4UBMmTNDQoUPVpUsXVVZWas+ePXrnnXf02WefKT8/XykpKVqxYoVuvvnmOv2dufb5ed+zrV+/XgcPHpQkTZw4UeHh4Xbbc+23jH/84x/asmWLJOvz5ew9JsUe3vcbR2CHJisrK7OtBwQENNq+9iIoLS11237Ov9B+uB9XbQdWLXX+GzNjxgxlZGRIst4eP27cuAbbLlmypN6/towYMUIPPvig7r//fr3xxhvKycnRr371Ky1ZssSltbYVLXnuJ06cqKlTp9YZ7jhkyBBNnjxZH330kSZNmqTKykr9+te/1vjx4+sMf6mttym1OluvN/CEa//tt9+2DWVx5O46rv2Li6vf97n2247q6mrdfffdOnLkiCTpj3/8o6688soG22/ZsqXea3/UqFGaMWOGUlNT9dlnn8lisehPf/qTXnzxRXeVDgf96le/0uzZs+v8/7Bhw3TPPffolVde0c9//nNVV1frvvvu04EDBxQUFHRBW2eufa57z/bWW2/Z1h153+fad7+1a9fqD3/4gyQpJiZG//nPf5zeFu/7jWNILJrs/DfH2odE2lN7q2lwcLDb9nP+7aw/3I+rtgOrljr/9jz33HN69dVXJVkDnJdfftlue3u3Rvv7++vVV1+1zTS8dOlSbpNvQEue+8jISLvPJrv11ls1a9YsSVJJSYkWLlxYp01tvU2pVeLab4gnXPu1P7gHBgZq8uTJjbbn2r+4uPp9n2u/7XjwwQf16aefSrJ+/3/yySfttrd37YeHh+uDDz5Q+/btJUnz58936GsF7tXYMLbp06frZz/7mSTpxIkTMpvNddo4c+1z3XuusrIy/fe//5UkdenSRTfccEOjfbj23eu7777TxIkTVVVVpaCgIP33v/9VTEyM09vjfb9xBHZosvNvRXbkNvLayRscuUXV2f2cP0HED/fjqu3AqqXOf0NeeeUVPf7445KsDxX9+OOPL7i12Rl+fn62HwKlCx+iiu+19rn/oQceeMAW6tV3zmrrbUqtEtd+Q1r7/G/ZskW7d++WJI0fP77RX+4cwbXvWVz9vs+13zY89thjmj9/viTr3bEffPBBs2eHjYyM1I9//GNJ1q+B2jv24dmmT59uW3fV+z7Xvedavny58vPzJUl33323S2aF5tp33qFDhzR69GidPXtWvr6+Wrx4sa699tpmbZP3/cYR2KHJgoKCFB0dLUmNTsxw9uxZ20Vx/oMiHXH+gycb28/5D5784X6c2Y7JZHLogbXeqKXOf33ee+89Pfjgg5Kknj176vPPP1eHDh2avV1JSkxMtK1zl039WvPc1ycmJsZWT33nrPYaLi4utv3A15Daa79jx44e/yyL1tLa59+ZySYcwbXvOVz9vs+1f/H761//anuw+VVXXaWPPvrIZXdEcO1ffBo7Z7XXviMTx9Ve++76GQXNx/u+5zhx4oRuuOEGnThxQiaTSa+99ppuu+22Zm+X9/3GEdjBKbXf6Pbv36+qqqoG29XeDSE1fbrn87+Znr+dpu7Hme1079692XdttWUtcf5/aPny5brnnntUU1Ojzp07a9WqVS4NVe0Nv8T3WuPc22PvvDl67VdVVenAgQOS3FtrW9Ba57+yslKLFy+WZA1qb7rppmZvsxbXvudw5v3az89Pffv2dWo7XPue7d///rftOUkJCQlauXJlo7PCNgXX/sWnsXNWe+2fO3dOJ0+ebLBddna2CgoKJHHte6pTp05p5cqVkqxh/YABA1y2ba79psnLy9ONN95om/zjn//8p8sCVN73G0dgB6dcc801kqwp9rZt2xpsd/7t6klJSU3axyWXXKIuXbrU2U59vvrqK0lS165d1atXr3prbWw7J0+e1N69e52q1du0xPk/36pVq3THHXeoqqpK0dHR+vzzz9WnTx+nt1efzMxM23rt1x3qaulzb09ubq7y8vIk1X/OHL32MzIybHeDce3b11rnPz09XadPn5Yk3XXXXfLzc92cWVz7nmPIkCG2B0bbu2YrKir09ddf2/r4+/tf8DrX/sXvrbfe0owZMyRZZwz/4osvXHZHfS2u/YtPY+fM0Wu/JX5GQfO8++67tj8MuvLuOolrvynOnTunMWPG2D5nzz//vG22blfgfd8BBuCEzZs3G5IMScb06dPrbVNdXW0kJCQYkoyoqCijoqKiyfv5xS9+YdvPpk2b6m2zadMmW5sHH3yw3ja1dbRv394oLi6ut81zzz1n284HH3zQ5Fq9SUudf8MwjA0bNhihoaGGJCMyMtLIyMhoTun1qqystNUqyTh69KjL99FWtOS5b8wzzzxjq+Xpp5+u83p5ebkRGRlpSDISEhKMmpqaerczffp023a2bNnillrbitY6/xMnTrTtd/v27c3eXi2ufecdOnTI9nmbOnWqy7Z78803G5IMPz8/Iysrq9427733nm3ff/vb3+q8zrXvfu46/4ZhGGaz2fD19TUkGd26dTMOHTrk0u0bhmHk5+cb0dHRhiQjJCTEKCsrc/k+2ip3nvvG3HfffbZ9v/XWW3Vez87ONnx8fAxJxpgxYxrczpgxYwxJho+Pj5Gdne3Oktucljr/V155pSHJ8Pf3N06dOuWy7XLtO664uNhISkqyne8nnnjCLfvhfd8+Ajs4bcSIEbaLa+PGjXVe/9vf/ma7IJ566qk6r69evbrRb/h79uyx/dA2ePBgo6Sk5ILXS0pKjMGDB9vq2Lt3b73bWbhwoW1fDz30UJ3X9+/fb0RERBiSjLi4OKOysrLxT4CXa4nzv337diMqKsqQZISGhhrr169vcp1ffvmlcfbs2QZfr6ioMKZOnWqrZdy4cU3eh7dx97k/dOiQ8b///c9uDStWrDACAgIMSUZwcLBx7Nixets9+eSTdt/gN27caPj5+RmSjJEjR9rdJ6xa4to/3+nTp23neuDAgQ7XybXvXs780rZo0SK7XxuGYRirVq2ytRk/frxRVVV1weu5ublGjx49bIHwmTNn6t0O1757uev8r1y50na9x8TEGLt3725ybZ988kmdnxfPV1hYaIwePdpWy8MPP9zkfXgzd5z7nTt3Gvv27bO7jVdeecW2jdjYWKOoqKjedj/5yU9s7f773//Wef2DDz5otcCxLXDXtX++b7/91qn3Zq591ykvL7/gc/XII484tR3e95vPdWNK4HXmzp2rpKQklZaWavTo0Xr88ceVnJys0tJSLV682DajV3x8vGbOnOnUPuLj4/W73/1Ozz//vDIyMpSUlKTf//736tOnjw4cOKC//vWv2r59uyTpd7/7XZ3x7LWmTp2q1157TRs2bNDLL7+skydP6v7771e7du20ZcsWPf300yooKJCPj49eeukllw63aqvcff4PHDigMWPG2B4c+swzzygyMlLffvttg31iYmLqTC3+xhtvaPz48Ro/frxGjRqlfv36KSIiQkVFRdq2bZvmz59vu807JiZGc+fObXKt3sbd5/7w4cNKTk7W8OHDNW7cOF1++eW283rw4EGlpaUpLS1NhmFIkv7+97+ra9eu9W7rd7/7nd5//33t3btXjz76qPbv368f//jHCg4O1urVq/WXv/xFVVVVCg4O1v/93/859wnxMi3xvf98ixcvVkVFhSTr93JHce271vr167V//37bx7XD0SXrMw1ff/31C9rfe++9Tu3nuuuu049//GMtXrxYy5cv14033qhf/epX6tKli3bt2qVnn31WR48elWSdkKBdu3b1bodr37Va4vx//fXXmjhxoioqKuTv769//OMfqqystPu+361btzozRj///PO6++67NWnSJF1zzTXq06ePwsLCdO7cOW3cuFHz5s2zfQ3169dPs2fPbnKt3qQlzv22bdt03333KTk5WTfffLMGDhyo6OhoVVVVaffu3XrnnXf02WefSZJ8fX01f/78Bp81/eyzz+rTTz9Vbm6u7rzzTmVkZOjWW2+VJH300UeaM2eOJOsD55955pkm1+ptWup7//neeOMN23pT3ve59l3nzjvvtF1z1113nX72s5/Z/V4cEBCg+Ph4p/bF+34jWjsxxMVt+fLltjvT6lvi4+Mb/IuZo3dZVFdXGz/96U8b3Ick42c/+5lRXV1tt9bc3FxjyJAhDW4jMDDQWLBgQXM+HV7Hnef//L/IOLrU95eb8++gsbcMHDjQ+O6771z8GWq73Hnuz3/d3hISEmK88sorjda6b98+o2/fvg1uJyIiwlixYkVzPyVepSW+99caNmyYIcnw9fVt0tAlrn3XcvTzWbvUx9G7LEpKSoxbbrmlwW37+Pg4dJcG177rtMT5f+qpp5r8vr9o0aI62xk5cqRDfUeOHNng3dn4Xkuce0d/5ouOjjaWLVvWaM1ff/21ERsb2+B2YmNjja+//rq5nxqv0JLf+w3D+ntfly5dDElGu3btjPLycodr5dp3naZ+L+7Zs2e92+F9v/m4jQjNMm7cOO3cuVNz585Venq6jh07poCAAMXFxen222/XjBkzFBIS0qx9+Pj4aOHChUpJSdH8+fO1detW5eXlqUOHDhoyZIimT5+um2++udHtdOjQQRs3btSCBQv07rvvymKxqLi4WF26dNH111+vRx55RJdeemmzavU2LXH+m+v3v/+9rrjiCm3atEmZmZnKzc3VmTNnFBgYqE6dOmnw4MFKTU3VxIkT5evr26q1Xkzcee4HDRqkt99+W5s2bVJGRoays7OVl5enqqoqtWvXTpdeeqmuv/563XfffXXuqKxPXFyctm/frpdffln//e9/tX//flVUVKh79+665ZZb9Mgjj6hnz55O1eqtWura37dvnzZv3ixJuvHGGxUbG+twX679i1dwcLDS09P17rvv6vXXX9eOHTuUn5+vTp06acSIEZoxY4aGDx/e6Ha49r3T3//+d61atUqbNm3Snj17lJeXp/z8fIWEhKhLly4aNmyY7rzzTo0ePZrZIj3ELbfcooULF2rTpk3avn27cnJydPr0aRmGofbt2+vyyy/XTTfdpHvvvdehmYKHDRumXbt2ae7cuVq2bJkOHz4syTqh3W233aZf/epXio6OdvNRwRmrVq3SiRMnJEmTJ0+2TUjgCK79ixfv+w0zGcb/H1MEAAAAAAAAoNX5tHYBAAAAAAAAAL5HYAcAAAAAAAB4EAI7AAAAAAAAwIMQ2AEAAAAAAAAehMAOAAAAAAAA8CAEdgAAAAAAAIAHIbADAAAAAAAAPAiBHQAAAAAAAOBBCOwAAAAAAAAAD0JgBwAAAAAAAHgQAjsAAAAAAADAgxDYAQAAAAAAAB6EwA4AAAAAAADwIAR2AAAAAAAAgAchsAMAAAAAAAA8CIEdAAAAAAAA4EEI7AAAAAAAAAAPQmAHAAAAAAAAeBACOwAAAAAAAMCDENgBAAAAAAAAHoTADgAAAAAAAPAgBHYAAAAAAACAByGwAwAAAAAAADwIgR0AAAAAAADgQQjsAAAAAAAAAA9CYAcAAAAAAAB4EAI7AAAAAAAAwIMQ2AEAAAAAAAAehMAOAAAAAAAA8CAEdgAAAAAAAIAHIbADAAAAAAAAPAiBHQAAAAAAAOBBCOwAAAAAAAAAD0JgBwAAAAAAAHgQAjsAAAAAAADAgxDYAQAAAAAAAB6EwA4AAAAAAADwIAR2AAAAAAAAgAchsAMAAIDNqFGjZDKZZDKZNHv27NYuBwAAwCsR2AEAAAAAAAAehMAOAAAAAAAA8CAEdgAAAAAAAIAHIbADAAAAAAAAPAiBHQAAAAAAAOBBCOwAAADgNitXrtRPf/pTxcfHKyIiQsHBwerZs6cmTpyo119/XZWVlQ5tp7KyUm+//bYmTZqk3r17KywsTH5+fgoPD1dcXJzGjBmjWbNmacuWLXa3s3XrVs2YMUNXXXWV2rVrJz8/PwUHB6tz5866+uqr9Ytf/EIffPCBiouLXXH4AAAATjEZhmG0dhEAAADwDKNGjdLatWslSU899ZRmz57t1HZOnTqlu+66S6tWrbLbrm/fvnr33Xc1ePDgBtvs3btXEyZMkMVicWjf+/btU1xc3AX/V1VVpYceekjz5893aBtPPPGEnnnmGYfaAgAAuJpfaxcAAACAtiUnJ0dJSUk6cOCA7f/69OmjYcOGKTAwUJmZmdq8ebMka7iWnJysTz/9VElJSXW2VVhYqBtuuEFZWVmSJB8fH1155ZVKSEhQWFiYSkpKdPz4ce3YsUN5eXkN1vS73/3ugrCua9euGjp0qDp27KiamhqdPn1amZmZ2rNnj6s+DQAAAE4jsAMAAIBLTZs2zRbWhYaG6tVXX9WPf/zjC9pkZGRo8uTJOnjwoIqKinTnnXdq586dioqKuqDda6+9ZgvrEhMTtWTJEvXr16/OPg3DUEZGhhYtWqTAwMALXjt9+rT+9a9/SZJ8fX21cOFC3XPPPTKZTHW2k52drbS0NIWEhDh9/AAAAM1FYAcAAACXWb16tT755BPbx++//77Gjh1bp93gwYO1atUqXXHFFTp37pyysrL00ksvadasWRe0W7dunW197ty59YZ1kmQymTRkyBANGTKkzmubNm1SVVWVJOnHP/6xpk6d2mD9nTt31sMPP2z/IAEAANyMSScAAADgMq+88optffz48fWGdbV69eqlxx9/3PbxvHnz9MPHKxcUFNjWO3bs6FRNrtgGAABASyKwAwAAgMusXr3atv7Tn/600fbTpk2Tj4/1R9Ls7Ow6z5Dr3r27bX3evHlO1XT+NpYsWaJTp045tR0AAICWQmAHAAAAlzh+/PgFYdiPfvSjRvt07NhR8fHxto//97//XfD6HXfcYVufN2+ehg4dqpdffln79+93uK6rr77aFtodPXpUl156qR599FGtW7dOFRUVDm8HAACgpRDYAQAAwCVyc3Nt68HBwQ4PP+3Vq5dt/YczvY4ZM+aCZ8pt3bpVM2bMUN++fRUbG6vU1FT961//0rFjxxrcvr+/v9566y2FhYXZ9vHCCy/o2muvVWRkpEaMGKEnnnhCGzZsqDMkFwAAoDUQ2AEAAMAlioqKbOuhoaEO9zu/bWFhYZ3XX3rpJS1ZskRDhw694P9zcnJkNpv18MMPq0ePHkpNTdXRo0fr3cfIkSO1Y8cO3XPPPQoODrb9f1lZmdavX6+//OUvuuaaa9S/f38tW7bM4doBAADcgcAOAAAALlF7B5skFRcXO9zv/Lbh4eH1tpk4caI2b96sI0eO6I033tD06dOVmJhoe90wDJnNZl111VXau3dvvdvo3bu33njjDeXm5urTTz/VH//4RyUnJ18Q4O3du1cTJ07Uiy++6HD9AAAArkZgBwAAAJc4fwhsaWlpneGtDTl8+LBtvUOHDnbb9ujRQ/fcc4/mzZun7777TkePHtWf/vQnhYSESJJOnz6t3/zmN3a3ERoaqjFjxujpp5/Wl19+qdOnT+u///2vBg4caGvz2GOP6fjx4w7VDwAA4GoEdgAAAHCJrl27KiYmxvbxxo0bG+2Tl5d3wR1xV111VZP22b17d82aNUvz58+3/d9nn32m8vJyh7cRHBys1NRUrVmzRp06dZIkVVRUaOXKlU2qBQAAwFUI7AAAAOAyycnJtvXXX3+90favv/66ampqJEldunRRv379nNrv+PHjbeuVlZU6c+ZMk7fRvn17JSUl2T7OyclxqhYAAIDmIrADAACAy0yfPt22vnTpUrt3qR05ckTPPvvsBX1NJtMFbRwdVpuVlWVb9/HxUXR0tO3j06dPO7SNH27n/LsFAQAAWhKBHQAAAFwmOTlZN998s+3j1NRU/fe//63Tbtu2bbrhhhuUn58vyTq09Ze//GWddsOHD9ddd92lTz75RBUVFfXuc+/evZo6dart4+uvv14BAQG2j//5z3/qiiuu0H/+8x+dPHmy3m0UFRXpiSee0NatWyVJvr6+Gj16dOMHDAAA4AYmwzCM1i4CAAAAnmHUqFFau3atJKlTp06KjY11uO+f//xnjR8/Xjk5OUpKStKBAwdsr/Xt21fDhg1TQECAMjMztXnzZtX+GBoaGqqVK1deMBy1Vq9evXTkyBFJ1mfNXXbZZerdu7ciIiJ09uxZHTx4UBkZGbb2wcHB+vrrr3XZZZfZ/m/27Nn605/+JEkymUzq06ePBgwYoA4dOqiyslLZ2dnauHGjioqKbH2eeOIJPfPMMw4fOwAAgCv5tXYBAAAA8Ew5OTlNeo5b7XPjOnXqpA0bNuiuu+7Sl19+KUnat2+f9u3bV6dPXFyc3n33XQ0ZMqTebYaHh9vWS0tLtXnzZm3evLnetpdcconefvvtC8K6H27DMAzt379f+/fvr3cbAQEBeuKJJzRr1iw7RwoAAOBeBHYAAABwuU6dOmnVqlX69NNP9f7772v9+vU6efKkKisrFRMToyuvvFITJkzQlClT5O/v3+B2vvnmG3399ddavXq1tmzZoj179ujEiRMqKSlRSEiIYmNjdcUVV2j8+PG64447FBgYWGcbM2fOVEpKij7//HNt3LhRu3bt0uHDh1VQUCAfHx9FRUUpISFB1113ne655x717NnTnZ8aAACARjEkFgAAAAAAAPAgTDoBAAAAAAAAeBACOwAAAAAAAMCDENgBAAAAAAAAHoTADgAAAAAAAPAgBHYAAAAAAACAByGwAwAAAAAAADwIgR0AAAAAAADgQQjsAAAAAAAAAA9CYAcAAAAAAAB4EAI7AAAAAAAAwIMQ2AEAAAAAAAAehMAOAAAAAAAA8CAEdgAAAAAAAIAH8WvtAuB6ZWVl2rVrlySpY8eO8vPjNAMAAAAAALhDVVWVcnNzJUkDBw5UUFBQs7dJktMG7dq1S0OHDm3tMgAAAAAAALzKli1bNGTIkGZvhyGxAAAAAAAAgAfhDrs2qGPHjrb1LVu2qHPnzq1YDQAAAAAAQNuVnZ1tG+l4fibTHAR2bdD5z6zr3LmzunXr1orVAAAAAAAAeAdXzSPAkFgAAAAAAADAgxDYAQAAAAAAAB6EwA4AAAAAAADwIAR2AAAAAAAAgAchsAMAAAAAAAA8CIEdAAAAAAAA4EEI7AAAAAAAAAAPQmAHAAAAAAAAeBACOwAAAAAAAMCDENgBAAAAAAAAHsSvtQsA7JkyRVqzRmrXzrpERTm+HhIimUytWj4AAAAAAECTEdjBo504IR0/bl2ayt+/aQHf+R9HRko+3H8KAAAAAABaAYEdPNrZs873rayUcnOtS1OZTNbQrqmBX+16QIDzdQMAAAAAAO9GYAePlp/fOvs1DOu+8/Olw4eb3j8kxPmwLzSUobwAAAAAAHgzAjt4tA8+kPLyrHfanT1rDdDqW6/9+Ny5Vi74/yspsS4nTjS9r59f04bv/nAor6+vSw8FAAAAAAC0MAI7eLQhQ5rWvrraGto1FOw1tl5V5fJDaLKqKmtImZfnXP/mDOUNDHTZYQAAAAAAACd5bWB35MgRvfTSS0pPT1dWVpYCAwPVp08f3XHHHXrooYcUEhLi9LZff/11TZs2zaG2ixYt0r333uv0vnAhX1+pfXvr0lSGIRUXOx/2lZS49FCcdu6cdTlypOl9g4OdD/vCwhjKCwAAAACAK3hlYLdixQpNmTJFBQUFtv8rKSlRRkaGMjIy9Oqrryo9PV1xcXGtWCVamslkDZ3CwqRu3Zrev7zcGpT9cJiuI+vnzlkDw9ZWWmpdsrOb3tfXt2nDd89fj4piKC8AAAAAALW8LrDbvn27Jk+erNLSUoWFhemxxx5TcnKySktLtXjxYi1YsEB79+7V2LFjlZGRofDw8Gbtb+XKlerSpUuDr3dzJhmCRwoMlGJirEtTVVdLBQXO391XWenSQ3FKdbV0+rR1cUZEhPN39wUFuewwAAAAAABodV4X2D3yyCMqLS2Vn5+fPvvsMw0fPtz22nXXXae+ffvq0Ucf1d69ezVnzhzNnj27WfuLj49Xr169mlc02jxf3+9DqEsuaVpfw7AOx21q2Ff7cXGxyw/HKQUF1uXo0ab3DQpqethX+3F4OEN5AQAAAACexasCuy1btmjdunWSpJ/97GcXhHW1Zs6cqUWLFslisWju3Ll64okn5O/v39KlAg4zmaTQUOvStWvT+1dUWIM7Z+7uy8/3jKG8ZWXSyZPWpalqh/I6c3dfVJR1Vl8AAAAAAFzJq37VXLZsmW29oUkhfHx8dM899+ixxx5Tfn6+Vq9erdGjR7dQhUDLCwhwfihvTU3zhvJWVLj0UJzS3KG84eHOD+UNDnbZYQAAAAAA2hCvCuzWr18vSQoNDdWgQYMabDdy5Ejb+oYNGwjsgAb4+Hx/p1lTR34bhnWCi8aG7Da0XlTk2mNxVmGhdcnKanrfwMCmDd/94VBeHx+XHgoAAAAAwEN4VWBnsVgkSXFxcfKzM46tf//+dfo4a9q0adqzZ4/y8vIUERGhuLg43XDDDfrFL36hrs6MX5R07Ngxu69nOzPFJ9DCTCYpJMS62JmXpUGVlc0byltT48KDcVJ5uZSTY12a6vyw1JmhvIz0BwAAAADP5TWBXVlZmfLy8iQ1PjNru3btFBoaquLiYmU5c9vMedasWWNbP336tE6fPq3Nmzdrzpw5+r//+z9Nnz69ydvs3r17s2oC2gJ/f6ljR+vSVDU11rvinB3KW17u0kNxSk2NdOaMdXFGWFjzhvIyUQcAAAAAuI/XBHaFhYW29bCwsEbb1wZ2RU6Ou+vdu7cmTZqk4cOH2wK2gwcPymw2Ky0tTWVlZfr5z38uk8mkBx54wKl9AHCOj48UGWldevZsev/S0qaHfLXr530ralVFRdalkRt26xUQ0LThu+evR0QwlBcAAAAAGuM1gV1ZWZltPSAgoNH2gYGBkqTS0tIm72vixImaOnWqTD+4BWXIkCGaPHmyPvroI02aNEmVlZX69a9/rfHjxys2Ntbh7Td21192draGDh3a5LoBOCY42Lo4M5S3qsr5obxnz3rGUN6KCunUKevSVLVhqbN39zGUFwAAAIA38JrALigoyLZe4cDUlOX/f8xbsBPTOEZGRtp9/dZbb9WsWbP05JNPqqSkRAsXLtQTTzzh8PYbG9ILwHP5+UkdOliXpjIM54by1n583t8tWk1Nzfc1HTrU9P6hoU0P+2o/DglhKC8AAACAi4PXBHbh4eG2dUeGuRYXF0tybPisMx544AHNmjVLhmFo7dq1TQrsAHgnk8k6pDQiQurRo+n9y8qcH8pbUODSQ3FacbF1OX686X39/Zt+R1/temQkQ3kBAAAAtByvCeyCgoIUHR2t06dPNzrL6tmzZ22BnbsmeIiJiVF0dLTy8vJ03JnfPAGgiYKCpM6drUtTVVVJ5845P5S3utqlh+KUykrnh/KaTM0byuvAkxgAAAAAwMZrAjtJSkxM1Lp167R//35VVVXJz6/+w9+9e7dtPSEhwW31/PAZdwDgqfz8pOho69JUhmGd4KK+YbqOrDvxKFGXM4zvnz14+HDT+4eENG347vnroaEM5QUAAAC8jVcFdtdcc43WrVun4uJibdu2TcOGDau33dq1a23rSUlJbqklNzdXeXl5kqQuzjy5HgAuEiaTFB5uXZy5abm83PmhvOfOufRQnFZSYl1OnGh6Xz+/5g3l9fV16aEAAAAAaAFeFdhNmDBBzz33nCRp0aJF9QZ2NTU1evPNNyVJUVFRSk5Odkst8+fPl2EYkqSRI0e6ZR8A0BYEBkqxsdalqaqrmzeUt6rKpYfilKoqKTfXujijOUN5//+E6QAAAABamFcFdkOHDtWIESO0bt06LVy4UFOnTtXw4cMvaDNnzhxZLBZJ0iOPPCJ/f/8LXl+zZo0txJs6dapef/31C14/fPiwzp49qyuvvLLBOj766CP9+c9/lmSdhXbatGnNPTQAQD18faX27a1LUxmGdYILZ4fylpS49FCcdu6cdTlypOl9g4ObNnz3/PWwMIbyAgAAAM7yqsBOkubOnaukpCSVlpZq9OjRevzxx5WcnKzS0lItXrxY8+fPlyTFx8dr5syZTd7+4cOHlZycrOHDh2vcuHG6/PLLFRMTI0k6ePCg0tLSlJaWZru77u9//7u6du3qugMEALiEyWQNncLCpG7dmt6/vPz75945M5T3/79NtKrSUuuSnd30vn5+1uDOmbv7oqIYygsAAADv5nWB3ZVXXqn3339fU6ZMUUFBgR5//PE6beLj45Wenq7w8HCn97Np0yZt2rSpwddDQkL0j3/8Qw888IDT+wAAeK7AQKlTJ+vSVNXVUkFBw6GevcDPk4by5uVZF2dERDQ97Kv9OCjIZYcBAAAAtAqvC+wkady4cdq5c6fmzp2r9PR0HTt2TAEBAYqLi9Ptt9+uGTNmKCQkxKltDxo0SG+//bY2bdqkjIwMZWdnKy8vT1VVVWrXrp0uvfRSXX/99brvvvtsd94BAHA+X9/vA6hLLmlaX8OwDsd1dqKO4mKXH45TCgqsy9GjTe8bFOT8RB3h4QzlBQAAQOszGYYnDLqBKx07dkzd//9UjFlZWermzFguAIBXqqhwfihvfr5nDOVtDl/f5g3l9fPKP4UCAAB4N3fkMPxYCQAAbAICpJgY69JUNTV1h/I6GvidPStVVrr2WJxRXS2dPm1dnBEe3rThu+evBwe77DAAAABwkSOwAwAALuHj8/2dZr16Na2vYVgnuHB2KG9RkWuPxVmFhdYlK6vpfQMDnR/KGxHBUF4AAIC2hMAOAAC0OpNJCgmxLs5Mnl5Z6fhQ3vpe84ShvOXl0smT1qWpzg9LnRnK6+/vwgMBAABAsxHYAQCAi56/v9Sxo3Vpqpoa611xztzdd/as9bl/ra2mRjpzxro4IyzM+bv7goO5uw8AAMDVCOwAAIBX8/GRIiOtizOaM5S3sNBlh9EsRUXWxZmhvAEBzRvK6+Pj0kMBAABoEwjsAAAAmiE42Lp06dL0vlVV34d4zgR+NTWuPBLnVFRIOTnWpalqw9IfBnnR0VLnzlJsrPXf2vXYWGtACAAA0NYR2AEAALQSPz+pQwfr0lSG4fxQ3vx8qazMpYfilJqa72s6dMixPu3bXxjiNbTORBwAAOBiRmAHAABwETKZrKFURITUs2fT+5eVOf/cvtYcylv7rL7vvrPfLjjYfqBXu96xo+Tr2zK1AwAAOIrADgAAwAsFBX0fWjVVVZV07pzzd/dVV7v0UOpVWmq9a6+xO/d8fKSYmMbDvdhY6yzGAAAALYHADgAAAE3i52d9zlx0dNP7GoZ1ggt7oV5urpSdLZ08+f2/7pqNt6bGuv2TJ6VvvrHfNiKi8aG4nTtbh+0yHBcAADQHgR0AAABajMkkhYdblx49HOtjGNYg7/wQr6H1c+fcV3tBgXXZs8d+O3//C+/Mq+9uvc6dpU6dmEQDAADUj8AOAAAAHs1kst611r69dOml9tuWll54Z94PA73af3Ny3DfLbmWllJVlXRpTOyNuY+FeeDh37QEA4E0I7AAAANBmBAdLl1xiXeyprpby8uzfrVf7b0mJ++o9fdq6fPut/XYhIY49Z49JNAAAaBsI7AAAAOB1fH2tQ1I7dZKuuKLhdoZhnRW3saG42dnW4M1dSkqkgwetiz2+vg1PovHD/wsOdl+9AACgeQjsAAAAgAaYTNbJJiIipPh4+20rKqxDbRsL906etA6bdYfq6u/3t327/baRkY0Pxe3cWWrXjuG4AAC0NAI7AAAAwAUCAqTu3a2LPYYhnTnj2CQaBQXuq/fcOeuye7f9dgEBjk+i4e/vvnoBAPAmBHYAAABACzKZrJNNREdLAwbYb1tSYn8Sjdr1U6fcN4lGRYV09Kh1aUyHDo5PogEAABpGYAcAAAB4qJAQqXdv62JPdbWUm+vYJBqlpe6rNy/PuuzaZb9daKhjz9nr2FHy8XFfvQAAeCoCOwAAAOAi5+trDbhiY6Urr2y4nWFYh9k68pw9d06iUVwsHThgXeypnRzEkXAvKMh99QIA0NII7AAAAAAvYTJZJ5uIjJT69bPftrzc8Uk0qqrcU291tXTihHVpTFSU/UCvdj0qikk0AACej8AOAAAAQB2BgVKPHtbFnpoaxyfRKCx0X735+dbFYrHfLjCwbqhXX7jXqZPkx29LAIBWwlsQAAAAAKf5+Fgnm+jQQRo40H7b4mLHJ9EwDPfUW14uHTliXewxmeqfRKO+cC8szD21AgC8F4EdAAAAgBYRGir16WNd7KmqanwSjdqlvNw9tRqGtYbcXGnnTvttw8Ice85ehw5MogEAcAyBHQAAAACP4uf3fdBlj2FI58459py9M2fcV29RkbR/v3Wxx8/vwkk0GnrOXqdOTKIBAN6OwA4AAADARclksk4iERUl9e9vv215uTW4ayzcy8lx3yQaVVXS8ePWpTHt2jk2iUZkJJNoAEBbRGAHAAAAoM0LDJR69rQu9tTUSKdPOzaJRlGR++o9e9a6ZGbabxcU5NgkGjExTKIBABcTvmUDAAAAwP/n4yN17GhdLrvMftuiIvuTaNT+m5vrvkk0ysqkw4etiz0mk/WY7N2tV7seGuqeWgEAjiOwAwAAAAAnhIVJcXHWxZ7KysYn0aj9152TaJw6ZV127LDfNjy88aG4sbFSdDSTaACAuxDYAQAAAIAb+ftLXbpYF3sMQ8rPd2wSjbNn3VdvYaF12bfPfjs/P2tw58gkGoGB7qsXANoiAjsAAAAA8AAmk3WyiXbtpIQE+23LyhyfRKO62j31VlVJx45Zl8a0b+/YJBoREUyiAQASgR0AAAAAXHSCgqRevayLPdXVjk+iUVzsvnrPnLEu331nv11QkGPP2YuJkXx93VcvALQ2AjsAAAAAaKN8fa3hVkyMdPnl9tsWFdkP9GrXc3PdV29ZmXTokHWxp3ZyEEfCvZAQ99ULAO5CYAcAAAAAUFiY1LevdbGnstI6eYUj4V5FhXtqramxDvfNyWm8bXi4/UDv/Ek0GI4LwFMQ2AEAAAAAHObvL3Xtal3sMQzr5BiOTKKRn+++emsn0di71347f3/rBBmNhXudOkkBAe6rFwAkAjsAAAAAgBuYTNbJJtq3lxIT7bctLXV8Eo2aGvfUW1np+CQa0dGND8Xt3Nl6dx937QFwBoEdAAAAAKBVBQdLl1xiXeyprpby8hybRKOkxH31nj5tXRqbRCM42LHn7HXsyCQaAC5EYAcAAAAAuCj4+lqHpHbqZL+dYTg+iUZenvvqLS2VDh60Lvb4+FgnBnEk3AsOdl+9ADwHgR0AAAAAoE0xmazDUcPDpfh4+20rKhyfRKOy0j311tR8PyS4MRERjk2i0b49w3GBixmBHQAAAADAawUESN26WRd7DEM6c6bxobjZ2VJBgfvqLSiwLnv22G/n79/43XqxsdbF39999QJwDoEdAAAAAACNMJmsk01ER0uXXmq/bUmJY5NonDrl3kk0srKsS2M6dHAs3GMSDaDlENgBAAAAAOBCISFS797WxZ7qaik317FJNEpL3VdvXp51+fZb++1CQhx7zl6HDkyiATQXgR0AAAAAAK3A1/f7Yan2GIZUWOjYc/ZOn3ZfvSUl0oED1sUeX1/7k2ic/y+TaAD1I7ADAAAAAMCDmUzWySYiIqR+/ey3raiQcnLsh3u1w3XdNYlGdfX3+2xMZKRjk2i0a8dwXHgXAjsAAAAAANqIgACpe3frYk9NjWOTaJw86d5JNM6dsy67d9tvFxDg2HP2OnViEg20DQR2AAAAAAB4GR8f67PmOnSQBgyw37a42PFJNAzDPfVWVEhHj1oXe0ympk2iAXgqAjsAAAAAANCg0FCpTx/rYk9VleOTaJSVuadWw7DWkJsr7dplv21oaOPP2audRMPHxz31Ag0hsAMAAAAAAM3m5/d9yGWPYViH2ToyicaZM+6rt7hY2r/futjj62sdauvIJBpBQe6rF96FwA4AAAAAALQYk8k62URkpNS/v/225eWNT6KRnW1tU1Xlnnqrq6UTJ6xLY6KiGh+K27mztR2TaMAeAjsAAAAAAOCRAgOlHj2siz01NdLp040Pxc3OloqK3Fdvfr51sVjstwsMbHwobu0kGn4kN16J0w4AAAAAAC5qPj5Sx47WZeBA+22LihybRCM3132TaJSXS0eOWBd7TCbrMTkS7oWFuadWtA4COwAAAAAA4DXCwqS4OOtiT1WVdeZbRybRKC93T62GYa3h1Clp5077bcPCHJtEIzqaSTQuBl4b2B05ckQvvfSS0tPTlZWVpcDAQPXp00d33HGHHnroIYWEhLh8nyUlJRowYIAOHTokSerZs6cOHz7s8v0AAAAAAIDm8fOTunSxLvYYhnTunGOTaJw96756i4qkffusiz1+fo5PohEY6L56YZ9XBnYrVqzQlClTVFBQYPu/kpISZWRkKCMjQ6+++qrS09MV11jc3kSzZs2yhXUAAAAAAODiZzJZJ5GIipISEuy3LStrfBKN2uG61dXuqbeqSjp+3Lo0pl27xofidu5snUCESTRcy+sCu+3bt2vy5MkqLS1VWFiYHnvsMSUnJ6u0tFSLFy/WggULtHfvXo0dO1YZGRkKDw932X7/7//+T0FBQfL391dhYaFLtgsAAAAAAC4OQUFSz57WxZ6aGikvz7FJNIqL3Vfv2bPWJTPTfrugIMeesxcTwyQajvK6T9Mjjzyi0tJS+fn56bPPPtPw4cNtr1133XXq27evHn30Ue3du1dz5szR7Nmzm73P6upq3X///aqurtZTTz2lhQsXEtgBAAAAAIB6+fhYw62YGOmyy+y3LSpy7Dl7ubnuq7esTDp82LrYYzJZj6m+QO+ee6x36sHKZBjumvPE82zZskXDhg2TJE2fPl3z5s2r06ampkYDBgyQxWJRVFSUTp06JX9//2bt98UXX9TMmTPVr18/7dy5U/Hx8Tpy5IjbnmF37Ngxde/eXZKUlZWlbt26uXwfAAAAAADg4lFZ6fgkGhUVLV9fTo41zLsYuSOH8ao77JYtW2ZbnzZtWr1tfHx8dM899+ixxx5Tfn6+Vq9erdGjRzu9zyNHjmjWrFmSpHnz5ikgIMDpbQEAAAAAADjD31/q2tW62GMYUn6+Y5No5Oe7pjY/P6lDB9dsq63wqsBu/fr1kqTQ0FANGjSowXYjR460rW/YsKFZgd2DDz6o4uJi/eQnP9GoUaOc3g4AAAAAAIC7mUzWySbatZMSE+23LS1tfBKN7Gxrm5qahrfTqZN1GDC+51WBncVikSTFxcXJz85TDvv371+njzMWL16sjz/+WO3atdOcOXOc3s4PHTt2zO7r2dnZLtsXAAAAAABAfYKDpV69rIs91dX2J9Hg2XV1eU1gV1ZWpry8PElqdCxxu3btFBoaquLiYmVlZTm1v7Nnz+pXv/qVJOn5559Xx44dndpOfWrHRQMAAAAAAHg6X1/rXXSdOkmXX97a1VwcvOaGw/NnZQ0LC2u0fWhoqCSpqKjIqf397ne/U05OjoYPH67777/fqW0AAAAAAADA+3jVHXa1HJn4ITAwUJJUWlra5H199dVXeu211+Tn56d58+bJZDI1eRv2NHbXX3Z2toYOHerSfQIAAAAAAKBleE1gFxQUZFuvcGB+4vLycklScHBwk/ZTXl6uBx54QIZh6JFHHtFll13WtEId4IrpgQEAAAAAAOCZvGZIbHh4uG3dkWGuxcXFkhwbPnu+Z599Vnv27FH37t31pz/9qWlFAgAAAAAAwOt51R120dHROn36dKOzrJ49e9YW2DV1goe//vWvkqQbbrhBK1asqLdN7baLi4u1ePFiSVJMTIyuu+66Ju0LAAAAAAAAbY/XBHaSlJiYqHXr1mn//v2qqqqSn1/9h797927bekJCQpP2UTvcdtGiRVq0aJHdtnl5ebrzzjslSSNHjiSwAwAAAAAAgPcMiZWka665RpL1zrZt27Y12G7t2rW29aSkJLfXBQAAAAAAANTyqsBuwoQJtvWG7n6rqanRm2++KUmKiopScnJyk/ZhGEajS8+ePSVJPXv2tP3fmjVrnDomAAAAAAAAtC1eFdgNHTpUI0aMkCQtXLhQmzZtqtNmzpw5slgskqRHHnlE/v7+F7y+Zs0amUwmmUwm3XvvvW6vGQAAAAAAAN7Fq55hJ0lz585VUlKSSktLNXr0aD3++ONKTk5WaWmpFi9erPnz50uS4uPjNXPmzFauFgAAAAAAAN7G6wK7K6+8Uu+//76mTJmigoICPf7443XaxMfHKz09XeHh4a1QIQAAAAAAALyZVw2JrTVu3Djt3LlTv/71rxUfH6+QkBBFRUVp8ODB+utf/6rt27crLi6utcsEAAAAAACAFzIZhmG0dhFwrWPHjql79+6SpKysLHXr1q2VKwIAAAAAAGib3JHDeOUddgAAAAAAAICnIrADAAAAAAAAPAiBHQAAAAAAAOBBCOwAAAAAAAAAD0JgBwAAAAAAAHgQAjsAAAAAAADAgxDYAQAAAAAAAB6EwA4AAAAAAADwIAR2AAAAAAAAgAchsAMAAAAAAAA8CIEdAAAAAAAA4EEI7AAAAAAAAAAPQmAHj1ZdU62yqrLWLgMAAAAAAKDFENjBo607uk4dX+iou8x3yZxpVkllSWuXBAAAAAAA4FZ+rV0AYI8506yiiiK99+17eu/b9xTsF6xb+t6ilIQUjY0fq4jAiNYuEQAAAAAAwKUI7OCxaowamS3mC/6vtKpUZotZZotZgb6BGt1ntFITUzUufpzaBbdrpUoBAAAAAABch8AOHuvbU9/qZNHJBl8vry7Xir0rtGLvCvn5+OmG3jcoJSFFE/pPUIeQDi1YKQAAAAAAgOvwDDt4rMs6XaYTM0/oP2P/o+svuV6+Jt8G21bVVOnT/Z/q/hX3K/bvsbr+zev1n63/sRv4AQAAAAAAeCKTYRhGaxcB1zp27Ji6d+8uScrKylK3bt1auSLXyCvJ04e7P5TZYtYXB79QZU1lo31MMimpR5JSE1I1KWGSukd2b4FKAQAAAACAt3BHDkNg1wa11cDufPll+VqxZ4XSLGlauX+lyqvLHeo3rOswpSSkKCUxRb3b9XZzlQAAAAAAoK0jsINDvCGwO19heaE+3vex0ixp+njfxyqpLHGo35WxVyo1MVUpCSnq16Gfm6sEAAAAAABtEYEdHOJtgd35SipL9On+T2W2mLVizwoVVhQ61G9AzAClJKQoNTFVl3a8VCaTyc2VAgAAAACAtoDADg7x5sDufGVVZfri4BdKy0zTh3s+VH5ZvkP94qPjbeHdlbFXEt4BAAAAAIAGEdjBIQR2dVVUV2j1odUyW8xaunup8kryHOrXK6qXUhNSlZKYoqFdh8rHxMTKAAAAAADgewR2cAiBnX1VNVVad2SdzBazzBazThaddKhft4humtR/klITU/Wj7j+Sr4+vmysFAAAAAACejsAODiGwc1yNUaNNWZuUlpkms8WsrIIsh/p1Cu2kSQmTlJKQopG9RsrPx8/NlQIAAAAAAE9EYAeHENg5xzAMbT2xVeZMs9IsaTp49qBD/aKDozWh/wSlJKTo+t7XK8A3wM2VAgAAAAAAT0FgB4cQ2DWfYRjakbPDdufd7rzdDvWLDIzU+H7jlZqYqtF9RivIL8jNlQIAAAAAgNZEYAeHENi5XmZupi2825mz06E+YQFhujX+VqUkpOjmuJsVGhDq5ioBAAAAAEBLI7CDQwjs3Gvf6X0yW8xKy0zTtuxtDvUJ9gvWzX1vVmpCqsbGj1VEYISbqwQAAAAAAC2BwA4OIbBrOYfOHtISyxKZLWZtOrbJoT4BvgEa3We0UhNSNb7feLULbufmKgEAAAAAgLsQ2MEhBHat41jBMS21LFWaJU3rjqyTocYvLT8fP11/yfVKSUjRhP4T1DG0YwtUCgAAAAAAXIXADg4hsGt9OUU5WrZ7mdIsaVp9aLWqjepG+/iYfDSy50ilJqZqYv+J6hzeuQUqBQAAAAAAzUFgB4cQ2HmW0yWn9eGeD2W2mPX5gc9VWVPZaB+TTErqkaSUhBRNSpikHpE9WqBSAAAAAADQVAR2cAiBnefKL8vXR3s/Ulpmmj7d/6nKq8sd6je061ClJKQoJSFFfdr3cXOVAAAAAADAUQR2cAiB3cWhsLxQH+/7WGaLWen70lVSWeJQvytir1BqQqpSElPUv0N/N1cJAAAAAADsIbCDQwjsLj4llSVauX+lzBazlu9ZrsKKQof6XdrxUqUkpCg1MVUDYgbIZDK5uVIAAAAAAHA+Ajs4hMDu4lZeVa4vDn6hNEuaPtz9oc6WnXWoX9/2fZWamKqUhBRd1fkqwjsAAAAAAFoAgR0cQmDXdlRWV2r14dUyZ5q1dPdS5ZbkOtSvV1Qv2zPvhnUbJh+Tj5srBQAAAADAOxHYwSEEdm1TVU2V1h9dr7TMNC2xLFF2UbZD/bqGd9WkhElKTUxVUvck+fr4urlSAAAAAAC8B4EdHEJg1/bVGDX6+tjXSstMk9li1tFzRx3qFxMao0n9JyklMUWjeo2Sn4+fmysFAAAAAKBtI7CDQwjsvIthGMo4kSGzxay0zDQdOHvAoX7RwdG6rd9tSk1M1fW9r1eAb4CbKwUAAAAAoO0hsINDCOy8l2EY2pmz03bnnSXP4lC/yMBIjes3TqkJqRrdZ7SC/YPdXCkAAAAAAG0DgR0cQmCHWpm5mTJnmmW2mLUjZ4dDfUL9Q3Vr/K1KSUjRLX1vUWhAqJurBAAAAADg4kVgB4cQ2KE++8/slznTrDRLmjJOZDjUJ9gvWDfF3aTUxFTdGn+rIgIj3FwlAAAAAAAXFwI7OITADo05nH9YSyxLZLaYtTFro0N9AnwDNLrPaKUkpGh8v/FqH9zezVUCAAAAAOD5COzgEAI7NMXxguNaunup0jLTtO7oOtUYNY328fPx03WXXKeUhBRN6D9BMaExLVApAAAAAACeh8AODiGwg7NOFZ/Sst3LlJaZpi8Pfalqo7rRPj4mH13b81qlJqRqYsJEdQnv0gKVAgAAAADgGQjs4BACO7jC6ZLTWr5nucwWsz478Jkqayob7WOSST/q/iOlJKQoJTFFPSJ7tEClAAAAAAC0HgI7OITADq52ruycPtr7kdIsafp0/6cqqypzqN+QLkOUmpiqlIQU9Wnfx81VAgAAAADQ8gjs4BACO7hTUUWRPt73scwWs9L3pqu4stihfpd3utwW3iV0THBzlQAAAAAAtAwCOxc5cuSIXnrpJaWnpysrK0uBgYHq06eP7rjjDj300EMKCQlxetsWi0WrVq3S1q1btWvXLp06dUp5eXny9fVVp06dNGTIEN11110aP368TCaTC4/qewR2aCmllaVaeWClzBazlu9ZroLyAof6JXZMVEpCilITUzUwZqDbrgUAAAAAANyNwM4FVqxYoSlTpqigoP5gIT4+Xunp6YqLi3Nq+1OmTNE777zTaLuRI0fKbDYrOjraqf3YQ2CH1lBeVa5Vh1YpLTNNH+75UGdKzzjUL659nFITUpWSmKJBnQcR3gEAAAAALioEds20fft2JSUlqbS0VGFhYXrssceUnJys0tJSLV68WAsWLJBkDe0yMjIUHh7e5H3ce++92r17t5KSkjRw4EDFxsaqY8eOOnv2rHbv3q1XXnlF3377rSRp+PDhWr9+vXx8fFx6nAR2aG2V1ZVac3iNzBazlliWKLck16F+PSN72iasuLrb1fIxufbaAAAAAADA1Qjsmunaa6/VunXr5Ofnp6+++krDhw+/4PUXXnhBjz76qCTpqaee0uzZs5u8j6qqKvn5+TX4enV1te644w4tWbJEkvThhx9q/PjxTd6PPQR28CTVNdVaf3S90jLTtGT3Ep0oPOFQvy7hXTSp/ySlJqbqmh7XyNfH182VAgAAAADQdAR2zbBlyxYNGzZMkjR9+nTNmzevTpuamhoNGDBAFotFUVFROnXqlPz9/V1ey9dff20LC3/729/qhRdecOn2CezgqWqMGm0+tllpmWkyW8w6cu6IQ/1iQmM0sf9EpSSkaFSvUfL3df11CQAAAACAM9yRw3jNeLNly5bZ1qdNm1ZvGx8fH91zzz2SpPz8fK1evdottZw/1LasrMwt+wA8kY/JR8O7D9ecMXN06JFD2nr/Vv0h6Q+Ka2//mZGnik/plW2vaPTboxU7J1Y//fCn+njfxyqvKm+hygEAAAAAaDleE9itX79ekhQaGqpBgwY12G7kyJG29Q0bNrillsWLF9vW+/fv75Z9AJ7OZDJpcJfBeu6G57R3xl7t+PkOPXntk0rsmGi335nSM1r0zSKNfXesYv4eo58s/YmW7V6m0srSFqocAAAAAAD3avhha22MxWKRJMXFxdl9xtz5AVptH1fIy8vTvn379Oqrr2rRokWSpA4dOujuu+9u8raOHTtm9/Xs7GynagRai8lk0mWdLtNlnS7Tn5P/LEuuRWaLWWmZadqRs6PBfgXlBXp759t6e+fbCvUP1dj4sUpJSNEtfW9RWEBYCx4BAAAAAACu4xXPsCsrK1NwcLAkaezYsfroo4/stg8LC1NxcbGuvvpqbdq0yen9jho1SmvXrq33tQ4dOmjp0qW65pprmrxdk8nkcFueYYeL3f4z+7XEskRpmWnaemKrQ32C/IJ0U9xNSk1I1a3xtyoyKNLNVQIAAAAAvBXPsHNSYWGhbT0srPG7bkJDQyVJRUVFbqnnl7/8pSwWi1NhHeBt4trH6dGkR7Xl/i06/MhhvTj6RSV1T7Lbp6yqTMt2L9OUpVMU8/cY3frurVq0fZHOlJ5poaoBAAAAAHCeVwyJPX9ih4CAgEbbBwYGSpJKS5v3TKxFixapuLhYhmEoPz9fGRkZ+s9//qN//etfOnjwoF599VV16tSpydvNysqy+3p2draGDh3qbNmAx+oZ1VO/Hv5r/Xr4r3Wi8ISWWpYqzZKmr458pRqjpt4+FdUVSt+XrvR96fL7yE/JvZKVkpCiiQkTFRMa08JHAAAAAABA47xiSGxubq5iYqy/mE+ePPmCSR/q06lTJ506dUoDBgzQrl27XFpLWVmZbr/9dn300Ufq3r27Nm7c6PIhq+64FRPwZKeKT2nZ7mUyW8z68tCXqqqparSPj8lHI3qMUGpiqib2n6iuEV1boFIAAAAAQFvDkFgnhYeH29YdGeZaXFwsybHhs00VFBSkRYsWKSQkRFlZWXr00Uddvg/A28SExuiBQQ9o5ZSVyvltjhbdtki3xt+qAN+G76itMWq09shaPfzJw+r2j25Kei1JL256UUfyj7Rg5QAAAAAA1OUVgV1QUJCio6MlNT7D6tmzZ22BXW066modOnRQUpL1GVwffvihKisr3bIfwBu1D26ve6+4VyvuXKFTvz2ldya9o4n9JyrIL8huv41ZGzXzs5nqNbeXhiwYor+u/6v2n9nfQlUDAAAAAPA9rwjsJCkxMVGStH//flVVNTxcbvfu3bb1hIQEt9XTsWNHSVJJSYny8vLcth/Am0UGRequgXdpyeQlyv1drj5I/UCTL52sUP9Qu/0yTmToD6v+oL7/7Ksr5l2hp9c+rczczBaqGgAAAADg7bwmsKudkbW4uFjbtm1rsN3atWtt67V3wbnD8ePHbevuGHoL4EJhAWG6/dLbtTh1sXJ/l6tlk5fpJ5f9RJGBkXb77cjZoVlrZunSf1+qxJcT9eSXT2rHyR3ygsd/AgAAAABaiVdMOiFJW7Zs0bBhwyRJ06dP17x58+q0qamp0YABA2SxWBQVFaVTp07J39/f5bUcO3ZMffr0UUVFhXr27KnDhw+7fPtMOgE4pqK6QqsOrlJaZpqW7VmmM6VnHOrXp10fpSamKiUhRYO7DJbJZHJzpQAAAAAAT8SkE80wdOhQjRgxQpK0cOFCbdq0qU6bOXPmyGKxSJIeeeSROmHdmjVrZDKZZDKZdO+999bpv3fvXn355Zd26zh37pzuuusuVVRUSJLuueceZw4HgIsE+Abo5r43a+FtC3Vy5kl9/pPP9fNBP1dMaIzdfgfOHtBfN/xVQ18dql5ze+k3K3+jjVkbVWPUtFDlAAAAAIC2ymvusJOk7du3KykpSaWlpQoLC9Pjjz+u5ORklZaWavHixZo/f74kKT4+XhkZGRfMLitZA7vk5GRJ0tSpU/X666/X+/rll1+uCRMmaNCgQYqNjZWfn59OnjypDRs2aOHChTp58qQkacCAAdq8ebNCQkJcepzcYQc0X3VNtTZkbVBaZpqWWJboeOHxxjtJ6hLeRRP7T1RqYqpG9BghXx9fN1cKAAAAAGhN7shh/Jq9hYvIlVdeqffff19TpkxRQUGBHn/88Tpt4uPjlZ6eXiesa4odO3Zox44ddtuMHTtWixYtcnlYB8A1fH18dW3Pa3Vtz2v1fzf9nzYf2yyzxSyzxazD+Ycb7Hei8IRe3vqyXt76sjqGdNTE/hOVkpii5F7J8vd1/RB7AAAAAEDb41WBnSSNGzdOO3fu1Ny5c5Wenq5jx44pICBAcXFxuv322zVjxgynQ7SkpCStXLlSX3zxhTIyMnTs2DHl5OSopKREERERuuSSS3T11VfrzjvvdOuEFgBcy8fko+Hdh2t49+F64cYX9L/s/8lsMSstM037zuxrsF9uSa7m/2++5v9vvtoFtdNt/W9TakKqbuh9gwL9AlvwCAAAAAAAFxOvGhLrLRgSC7QMwzD07alvlZaZJrPFrO9yv3OoX0RghMbFj1NKQopuirtJwf7Bbq4UAAAAAOAu7shhCOzaIAI7oHXsztstc6ZZaZY0fXPyG4f6hPqH6pa+tyglIUVj48cqLCDMvUUCAAAAAFyKwA4OIbADWt+BMwe0xLJEaZY0bTm+xaE+QX5BGtNnjFITUzUufpwigyLdXCUAAAAAoLkI7OAQAjvAsxw9d1RLLEtktpi14egGGWr8266/j79u7HOjUhJSdFu/2xQdEt0ClQIAAAAAmorADg4hsAM8V3ZhtpbuXqq0zDStPbJWNUZNo318Tb5KviRZqQmpmtB/gjqFdWqBSgEAAAAAjiCwg0MI7ICLQ25xrpbtXiazxaxVh1apqqaq0T4mmTSi5wilJqRqUsIkdY3o2gKVAgAAAAAaQmAHhxDYARefs6VntXzPcpktZq08sFIV1RUO9RvebbhSElKUkpiiXlG93FskAAAAAKAOAjs4hMAOuLgVlBcofW+60ixp+mTfJyqtKnWo36DOg5SamKqUhBT1je7r5ioBAAAAABKBHRxEYAe0HcUVxfpk/ycyW8z6aO9HKqoocqjfZZ0uU0pCilITU5XYMdHNVQIAAACA9yKwg0MI7IC2qayqTJ8d+ExpmWlavme5zpWfc6hf/w79beHd5Z0ul8lkcnOlAAAAAOA9COzgEAI7oO2rqK7Ql4e+VFpmmpbtXqbTpacd6te7XW+lJqQqJTFFQ7oMIbwDAAAAgGYisINDCOwA71JVU6W1h9fKbDFriWWJcopzHOrXI7KHJvWfpNTEVA3vPlw+Jh83VwoAAAAAbQ+BHRxCYAd4r+qaam3M2qi0zDQt2b1ExwqOOdSvc1hnTUqYpJSEFI3oOUJ+Pn5urhQAAAAA2gYCOziEwA6AJNUYNdpyfIvMmWaZLWYdyj/kUL8OIR00sf9EpSSk6LpLrpO/r7+bKwUAAACAixeBHRxCYAfghwzD0PaT22XONCvNkqa9p/c61K9dUDuN7zdeqYmpurH3jQr0C3RzpQAAAABwcSGwg0MI7ADYYxiGvsv9TmmZaTJbzPr21LcO9QsPCNe4fuOUkpCim+JuUoh/iJsrBQAAAADPR2AHhxDYAWiKPXl7ZLaYlZaZpu0ntzvUJ8Q/RLf0vUUpCSka23eswgPD3VwlAAAAAHgmAjs4hMAOgLMOnj1oe+bd5uObHeoT6BuoMXFjlJqQqnH9xikqKMq9RQIAAACAByGwg0MI7AC4Qta5LC2xLJHZYtb6o+tlqPG3C38ff93Q+walJKTotv63qUNIhxaoFAAAAABaD4EdHEJgB8DVsguztWz3MqVZ0rTm8BrVGDWN9vE1+WpUr1FKTUzVhP4TFBsW2wKVAgAAAEDLIrCDQwjsALhTbnGuPtzzocwWs744+IWqaqoa7WOSSSN6jlBKQoomJUxStwi+LwEAAABoGwjs4BACOwAt5WzpWa3Yu0Jmi1kr969UeXW5Q/2u7na1UhJSlJKQokvaXeLmKgEAAADAfQjs4BACOwCtobC8UOn70pWWmaaP932s0qpSh/pd1fkqpSakKiUxRfHR8W6uEgAAAABci8AODiGwA9DaiiuK9en+T2W2mLVi7woVVRQ51G9gzEClJKQoNTFViR0TZTKZ3FwpAAAAADQPgR0cQmAHwJOUVZXp8wOfK82SpuV7liu/LN+hfv2i+9nCuytiryC8AwAAAOCRCOzgEAI7AJ6qorpCXx76UuZMs5btWaa8kjyH+vVu19v2zLuhXYcS3gEAAADwGAR2cAiBHYCLQVVNlb468pXMmWYt2b1EJ4tOOtSve0R3TUqYpNTEVP2o+4/kY/Jxc6UAAAAA0DACOziEwA7Axaa6plqbjm1SWmaazBazjhUcc6hfbFisJvWfpJTEFF3b81r5+fi5uVIAAAAAuBCBHRxCYAfgYlZj1Gjr8a0yW8xKy0zTofxDDvXrENJBE/pNUEpiiq675DoF+Aa4uVIAAAAAILCDgwjsALQVhmHom5Pf2MK7Paf3ONQvKihK4/uNV2pCqm7sc6OC/ILcXCkAAAAAb0VgB4cQ2AFoiwzDUGZupm3Y7K5TuxzqFxYQpnHx45SSkKKb+96sEP8QN1cKAAAAwJsQ2MEhBHYAvMHe03tlzjQrzZKm/2X/z6E+If4hujnuZqUmpmps37EKDwx3c5UAAAAA2joCOziEwA6Atzl09pDMFrPMFrO+Pva1Q30CfQM1us9opSamalz8OLULbufmKgEAAAC0RQR2cAiBHQBvdqzgmJZYlshsMWvdkXUy1PjbnJ+Pn27ofYNSElI0of8EdQjp0AKVAgAAAGgLCOzgEAI7ALA6WXRSy3YvU1pmmtYcXqNqo7rRPr4mX43sNVKpCamamDBRsWGxLVApAAAAgIsVgR0cQmAHAHXlleTpw90fymwx64uDX6iyprLRPiaZdE2Pa5SSkKJJCZPUPbJ7C1QKAAAA4GJCYAeHENgBgH35ZflasWeF0ixpWrl/pcqryx3qN6zrMKUkpCglMUW92/V2c5UAAAAALgYEdnAIgR0AOK6wvFAf7/tYaZY0fbzvY5VUljjU78rYK5WamKqUhBT169DPzVUCAAAA8FQEdnAIgR0AOKekskSf7v9UZotZK/asUGFFoUP9BsQMUEpCilITU3Vpx0tlMpncXCkAAAAAT0FgB4cQ2AFA85VVlemLg18oLTNNH+75UPll+Q71i4+OV2pCqlISU3Rl7JWEdwAAAEAbR2AHhxDYAYBrVVRXaPWh1TJbzFq6e6nySvIc6ndJ1CW2Z94N7TpUPiYfN1cKAAAAoKUR2MEhBHYA4D5VNVVad2SdzBazzBazThaddKhft4humtR/klITU/Wj7j+Sr4+vmysFAAAA0BII7OAQAjsAaBk1Ro02ZW1SWmaazBazsgqyHOrXKbSTJiVMUkpCikb2Gik/Hz83VwoAAADAXQjs4BACOwBoeYZhaOuJrTJnmpVmSdPBswcd6hcdHK0J/ScoJSFF1/e+XgG+AW6uFAAAAIArEdjBIQR2ANC6DMPQjpwdtjvvduftdqhfZGCkxvcbr9TEVI3uM1pBfkFurhQAAABAcxHYwSEEdgDgWTJzM23h3c6cnQ71CQsI063xtyolIUU3x92s0IBQN1cJAAAAwBkEdnAIgR0AeK59p/fJbDErLTNN27K3OdQn2C9YN/e9WakJqRobP1YRgRFurhIAAACAowjs4BACOwC4OBw6e0hLLEtktpi16dgmh/oE+AZoTJ8xSklI0fh+49UuuJ2bqwQAAABgD4EdHEJgBwAXn2MFx7TUslRmi1lfHflKhhp/e/bz8dP1l1yvlIQUTeg/QR1DO7ZApQAAAADOR2AHhxDYAcDFLacoR8t2L1OaJU2rD61WtVHdaB8fk49G9hyp1MRUTew/UZ3DO7dApQAAAAAI7OAQV32hVFRUqKioSMXFxaqoqFBNTY0rywTs8vHxUUBAgEJDQxUWFqaAgIDWLgloFadLTuvDPR/KbDHr8wOfq7KmstE+JpmU1CNJKQkpmpQwST0ie7RApQAAAIB3IrCDQ5r7hWIYhvLy8pSXl+eO8gCndOzYUdHR0TKZTK1dCtBq8svy9dHej5SWmaZP93+q8upyh/oN7TpUKQkpSklIUZ/2fdxcJQAAAOBdCOxc6MiRI3rppZeUnp6urKwsBQYGqk+fPrrjjjv00EMPKSQkxOltl5SU6NNPP9Xnn3+ujIwM7d+/X0VFRYqIiFB8fLzGjBmjn//854qNjXXhEX2vuV8oJ06c0Llz5y74P5PJJF9fX5fVCDSmurpaP/z2FBkZqS5durRSRYBnKSwv1Mf7PpbZYlb6vnSVVJY41O+K2CuUmpCqlMQU9e/Q381VAgAAAG0fgZ2LrFixQlOmTFFBQUG9r8fHxys9PV1xcXFN3vbOnTuVlJSkoqIiu+0iIiI0f/58TZ48ucn7aExzvlDKysp06NAh28fR0dGKiIhQYGAgdzahRRmGofLychUUFOj06dO2/+/du7cCAwNbsTLA85RUlmjl/pUyW8xavme5CisKHep3acdLlZKQotTEVA2IGcD3eQAAAMAJBHYusH37diUlJam0tFRhYWF67LHHlJycrNLSUi1evFgLFiyQZA3tMjIyFB4e3qTtr1+/XiNGjJAkJSUl6dZbb9XgwYMVHR2t3NxcLVmyRAsWLFBNTY18fX21YsUK3XzzzS49xuZ8oZw8eVJnz56VJMXExCg6OtqltQHOOH36tE6dOiVJateundvuTgXagvKqcn1x8AulWdL04e4PdbbsrEP9+rbvq9TEVKUkpOiqzlcR3gEAAAAOIrBzgWuvvVbr1q2Tn5+fvvrqKw0fPvyC11944QU9+uijkqSnnnpKs2fPbtL2N27cqLlz5+qpp55SYmJivW0+/PBDTZw4UYZhqE+fPtq3b59LfzFqzhfKwYMHVV5ufSZSfHw8w2DhEaqrq7V3715JUmBgoHr37t3KFQEXh8rqSq0+vFrmTLOW7l6q3JJch/r1iuple+bdsG7D5GPycXOlAAAAwMWLwK6ZtmzZomHDhkmSpk+frnnz5tVpU1NTowEDBshisSgqKkqnTp2Sv7+/y2tJTU2V2WyWJG3btk1XXXWVy7bdnC+Uffv2qaqqSn5+furbt6/LagKaa+/evaquruZrE3BSdU211h1dJ3OmWWaLWdlF2Q716xreVZMSJik1MVVJ3ZPk68MfcgAAAIDzuSOw86o/mS9btsy2Pm3atHrb+Pj46J577pEk5efna/Xq1W6pJTk52bZ+4MABt+wDaEsYngc0j6+Pr0b1GqV/3vJPHfvNMW346Qb9+upfq0dkD7v9jhce1z+3/FMjXx+pri921S8++oW+OPiFqmqqWqhyAAAAwPt4VWC3fv16SVJoaKgGDRrUYLuRI0fa1jds2OCWWmqHnUpi2CkAoEX5mHz0o+4/0otjXtThRw5ry31b9Puk36tPuz52++UU52jetnm68a0bFfv3WP3sw5/pk32fqKK6ooUqBwAAALyDX2sX0JIsFoskKS4uTn5+DR96//796/RxtbVr19rWExISmtT32LFjdl/PznZsmBMAACaTSUO6DtGQrkP03PXPaWfOTqVlpslsMcuS1/B74OnS03rtm9f02jevKTIwUuP6jVNqQqpG9xmtYP/gFjwCAAAAoO3xmsCurKxMeXl5ktToWOJ27dopNDRUxcXFysrKcnktO3bsUHp6uiRp4MCBTQ7sasdFAwDgSiaTSZfHXq7LYy/X09c9rczcTNsz73bk7Giw37nyc3p759t6e+fbCvUP1a3xtyolIUW39L1FoQGhLXgEAAAAQNvgNYFdYWGhbT0sLKzR9rWBXVFRkUvrKC8v13333afq6mpJ0rPPPuvS7QMA4CqJHROVODJRT458UvvP7Jc506w0S5oyTmQ02Ke4sljvf/e+3v/ufQX7BeumuJuUmpiqW+NvVURgRAtWDwAAAFy8vCawKysrs60HBAQ02j4wMFCSVFpa6tI6ZsyYoYwM6y86U6dO1bhx45q8jcbu+svOztbQoUOdqg8AgPrEtY/T76/5vX5/ze91OP+wlliWyGwxa2PWxgb7lFaVaunupVq6e6kCfAM0us9opSSkaHy/8Wof3L4FqwcAAAAuLl4T2AUFBdnWKyoafzh27aQQwcGuew7Pc889p1dffVWSNGTIEL388stObccV0wMDjjp8+LAuueQSSdKiRYt07733tm5BAFpdr6he+s3w3+g3w3+j4wXHtXT3UqVlpmnd0XWqMWrq7VNRXaGP9n6kj/Z+JD8fP113yXVKSUjRhP4TFBMa08JHAAAAAHg2r5klNjw83LbuyDDX4uJiSY4Nn3XEK6+8oscff1ySdVKLjz/+WKGhPNfHWx0+fFgmk6nZCwC0tq4RXTVj6AytuXeNsmdm65VbX9GNvW+Ur6nhGdCraqr02YHPNP2j6eo8p7OS30jWy1te1onCEy1YOQAAAOC5vCawCwoKUnR0tKTGZ1k9e/asLbBzxQQP7733nh588EFJUs+ePfX555+rQ4cOzd4uAACeJCY0Rg8MekCf/eQz5fw2R6+Nf01j+46Vv49/g31qjBqtObxGMz6ZoW4vdtM1r12jf2z6h46eO9qClQMAAACexWuGxEpSYmKi1q1bp/3796uqqkp+fvUf/u7du23rTZ3B9YeWL1+ue+65RzU1NercubNWrVrFkFaoa9eu2rVrV4OvDxw4UJI0ePBgLVq0qKXKqlevXr1kGEar1gDg4hMdEq1pV07TtCun6VzZOX209yOlWdL06f5PVVZVVm8fQ4Y2ZG3QhqwN+s1nv9GQLkOUmpiqlIQU9Wnfp4WPAAAAAGg9XhXYXXPNNVq3bp2Ki4u1bds2DRs2rN52a9euta0nJSU5vb9Vq1bpjjvuUFVVlaKjo/X555+rTx9+4YDk7++vAQMGNNouNDTUoXYA4MkigyJ192V36+7L7lZRRZE+3vexzBaz0vemq7iyuMF+W09s1dYTW/X7L36vyztdbgvvEjo2749pAAAAgKfzmiGxkjRhwgTbekN3LdXU1OjNN9+UJEVFRSk5OdmpfW3cuFG33XabysvLFRkZqZUrV+rSSy91alsAALQVYQFhuuPSO/R+6vvK/V2ulk5eqimXTVFEYITdfjtydujJ1U8q8d+JuvTfl2rW6lnambOTO4ABAADQJnlVYDd06FCNGDFCkrRw4UJt2rSpTps5c+bIYrFIkh555BH5+1/43J01a9bYHvjf0GyZ33zzjcaOHavi4mKFhoYqPT1dgwYNcu3BwGuNGjVKJpNJo0aNkiTt27dPM2bMUN++fRUSEiKTyaTDhw/b2mdnZ+vf//63UlNT1bdvX4WGhiowMFBdu3bVbbfdpvfff181NfXP6ihdOEHG66+/Xuf12bNnXzAJRllZmV544QVdddVVCg8PV3h4uIYOHap//etfqqqqcuWnAsBFLtg/WBP6T9BbE9/Sqd+eUvpd6Zp2xTS1D25vt19mbqae/uppXT7vcsX/K16PffGYMk5kEN4BAACgzfCqIbGSNHfuXCUlJam0tFSjR4/W448/ruTkZJWWlmrx4sWaP3++JCk+Pl4zZ85s8vYPHDigMWPGKD8/X5L0zDPPKDIyUt9++22DfWJiYhQTE+PU8cC7ffjhh7r77rttk6T8UHV1tbp161ZvIHfixAktX75cy5cv18KFC7VkyZJmz4qck5Ojm266Sd98880F/79161Zt3bpVn332mZYtWyYfH6/6WwEABwT6BeqWvrfolr63qLK6UmsOr5HZYtbS3Ut1qvhUg/32n9mv5zc8r+c3PK+ekT2VkpCilMQUXd3tavmY+F4DAACAi5PXBXZXXnml3n//fU2ZMkUFBQV6/PHH67SJj49Xenq6wsPDm7z9devW6dSp73+x+PWvf91on6eeekqzZ89u8r5aS41Ro9Mlp1u7jBYVHRLtcb/4HT16VFOmTFFISIiefPJJjRgxQr6+vtq6dasteKu92+S6667TzTffrIEDB6pjx44qLCzUwYMHtWDBAm3atEmff/65HnroIb3xxhvNqmnSpEnKzMzUL3/5S40bN07t27fXnj179PTTT8tisWjFihVasGCBpk+f3uzjB9B2+fv668Y+N+rGPjfq5Vte1vqj65WWmaYlu5foROGJBvsdOXdEL379ol78+kV1Ce+iSf0nKTUxVdf0uEa+Pr4teAQAAABA83hdYCdJ48aN086dOzV37lylp6fr2LFjCggIUFxcnG6//XbNmDFDISEhrV2mxzpdcloxf/euOwJP/faUOoZ2bO0yLnDo0CF16dJFmzZtUo8ePWz/f/5kKr6+vtqzZ4/i4uLq9B85cqSmTZump556Sn/+85/11ltv6Y9//KP69u3rdE21d9HVDteVpKuuukpjxoxRYmKicnJy9O9//5vADoDDfH18NbLXSI3sNVJzb56rzcc2Ky0zTWaLWUfOHWmw34nCE/rX1n/pX1v/pZjQGE3sP1EpCSka1WuU/H39G+wHAAAAeALPumWoBfXs2VMvvvii9uzZo+LiYp09e1Zbt27Vo48+ajesGzVqlAzDkGEY9T7P695777W97uhyMd1dB8/y/PPPXxDW/ZDJZKo3rDvfrFmz1KFDBxmGoeXLlzernocffviCsK5W+/btNW3aNEnSrl27dO7cuWbtB4B38jH5aHj34ZozZo4OPXJIW+/fqj8k/UFx7e1/nztVfEqvbHtFo98erdg5sfrphz/Vx/s+VnlVeQtVDgAAADSNV95hB7QFAQEBuv3225vUp6amRidPnlRhYaEqKytt/9+tWzfl5eVpx44dzarp7rvvbvC12olXDMPQoUOHdMUVVzRrXwC8m8lk0uAugzW4y2D95fq/aNepXbY77zJzMxvsd6b0jBZ9s0iLvlmkiMAIje83XikJKRrTZ4yC/YNb8AgAAACAhhHYARepvn37KigoqNF2hmHonXfe0cKFC7V582aVlpY22DYvL69ZNfXv37/B19q3/37Wx8LCwmbtBwDOZzKZdFmny3RZp8v05+Q/y5Jrkdliltli1jcnv2mwX0F5gd7e+bbe3vm2Qv1DNTZ+rFISUnRL31sUFtC8SXgAAACA5iCwQ5NFh0Tr1G8bnrGvLYoOiW7tEupo165do23Kyso0adIkffLJJw5t016Y5wh7w8nPnxm2urq6WfsBAHsSOibojx3/qD9e+0ftP7NfSyxLlJaZpq0ntjbYp7iyWB9894E++O4DBfkF6aa4m5SakKpb429VZFBkC1YPAAAAENjBCT4mH4+bgMEb+fo2PuPhs88+awvrRo4cqYceekhXXXWVYmNjFRwcbAvRrr32Wq1bt842qywAtBVx7eP0aNKjejTpUR3JP6IlliUyW8zakLWhwT5lVWVatnuZlu1epgDfAN3Y+0alJKTotv63qX1w+wb7AQAAAK5CYAe0UYZh6NVXX5UkjRgxQl9++eUFd7md78yZMy1ZGgC0ip5RPfXr4b/Wr4f/WicKT2ipZanSLGn66shXqjFq6u1TUV2h9H3pSt+XLr+P/JTcK1kpCSmamDBRMaHeNWM6AAAAWo7XzhILtHVnzpzRyZMnJUm33357g2FdUVGR9uzZ05KlAUCr6xLeRQ8NfUirp65W9sxsvXLrKxrdZ7T8fBr+W2ZVTZU+P/i5fp7+c3We01mjXh+lf235l04UnmjBygEAAOANCOyANqqqqsq2Xlxc3GC7V1999YK2AOBtYkJj9MCgB7Ryykrl/DZHi25bpFvjb1WAb0CDfWqMGq09slYPf/Kwur7YVUmvJenFTS/qSP6RFqwcAAAAbRWBHdBGdezYUVFRUZKk9957T+Xl5XXabN26VU8++WQLVwYAnqt9cHvde8W9WnHnCp367Sm9M+kdTew/UUF+9mfl3pi1UTM/m6lec3tpyIIh+uv6v2r/mf0tVDUAAADaGgI7oI3y8fHR3XffLUnauXOnrrnmGr333nvKyMjQqlWrNHPmTF177bUKCgpSfHx8K1cLAJ4nMihSdw28S0smL1Hu73L1QeoHmnzpZIX6h9rtl3EiQ39Y9Qf1/WdfXTHvCj299mll5ma2UNUAAABoC5h0AmjDnn32WW3YsEHffPONMjIydNddd13wevv27WU2mzVr1izt3bu3laoEAM8XFhCm2y+9XbdfertKK0v12YHPZLaYtXzPcp0rP9dgvx05O7QjZ4dmrZmlhA4JSklIUWpiqi7rdJlMJlMLHgEAAAAuJtxhB7RhkZGR2rBhg55++mkNHDhQQUFBCgsLU0JCgn77299qx44duvbaa1u7TAC4qAT7B+u2/rfpzYlv6tTvTunjuz7WT6/4qdoHVZ5lqQAAOS9JREFUt7fbz5Jn0TPrntEVr1yhvv/sqz988QdtPb5VhmG0UOUAAAC4WJgMfkpsc44dO6bu3btLkrKystStWzeH++7bt09VVVXy8/NT37593VUi0GR8bQLwdJXVlVp7ZK3MmWYt2b1Ep4pPOdSvZ2RPTUqYpNTEVF3d7Wr5mPh7KgAAwMWkOTlMQ/iJEAAAwAX8ff11Q+8b9J9b/6MTvzmhtfeu1cNDH1bX8K52+x05d0T/+PofSnotSd3/0V0zPp6hNYfXqLqmuoUqBwAAgKchsAMAAHAxXx9fXdvzWr1080s6+uuj2vjTjZo5fKZ6RfWy2+9E4Qm9vPVlJb+RrM5zOmv6iun67MBnqqyubJnCAQAA4BEI7AAAANzIx+Sj4d2H6++j/66DvzyojPsz9Ng1j6lve/vD+3NLcjX/f/M15u0x6vT3Tpr24TSl701XeVV5C1UOAACA1sIssQAAAC3EZDJpUJdBGtRlkJ697ll9e+pbpWWmyWwx67vc7xrsd7bsrF7/5nW9/s3rigiM0Lj4cUpJSNFNcTcp2D+4BY8AAAAALYHADgAAoBWYTCYN7DRQAzsN1J+S/6TdebtlzjQrzZKmb05+02C/gvICvbPrHb2z6x2F+ofqlr63KCUhRWPjxyosIKzlDgAAAABuw5BYAAAAD9C/Q389ce0T2j59u/Y/vF//r737jo+qyvsH/pnJzGTSGwlpFCWEsrKgEoqAEJEgILAUBVYksKBYUNy17GNDVkWQFRWfh11pCzZEBMQAKiAERAiEIAIroXdIIAnpZTLl/P7Iby7BTMvNzGSS+bxfr7wcvKfdnHznTr455975989Hj7geNuuU68vx9bGvMX7deET+MxJ/Wv0nfH7kcxRXFbtp1ERERETkClxhR0RERORh2oW3w4t9XsSLfV7ExeKLWJ+9Huuy12HPxT0QEBbrVBmq8O2Jb/HtiW+hVqoxqN0gjOk0BiM7jESEf4Sbz4CIiIiIGoIr7IiIiIg8WOuQ1niu13PYPWU3rvztChYNXYTktslQKqx/jNOb9Pju1HeYmjYVLd9riUGfDcLirMW4VnbNjSMnIiIiIrmYsCMiIiJqImKCYvBU0lPYkboDuc/nYsmDSzC43WColNY3TRiFET+e/RFPbH4CMQti0H9lf/zv/v/FlZIrbhw5EREREdUHE3ZERERETVBkQCQeu/sx/DDxB1x/4TpWjlyJ4YnDofHRWK0jIPDThZ/w7A/PIv6DeNyz/B4s2LsA54vOu2/gRERERGQX72FHRERE1MSF+YUhtVsqUrulokRXgs0nN2Nt9lp8f+p7VBoqrdbLuJyBjMsZeGHbC7g75m6M7TwWYzqNQfuI9m4cPRERERH9HhN2RERERM1IsG8wJnSZgAldJqC8uhzfn/4e67LXYdPJTSirLrNa72DOQRzMOYiXt7+MP7b8I8Z0GoOxnceic2RnN46eiIiIiAAm7IiIiIiarQBNAMZ2HouxnceiylCFrWe2Yu2xtUg7kYZiXbHVekeuHcGRa0fwxs430LFFRyl517VlVygUCjeeAREREZF3YsKOiIiIyAtoVVqM6DACIzqMQLWxGjvO7cDaY2ux4fgGFFQWWK13PP845uyegzm75+D2sNsxttNYjOk8BkmxSUzeEREREbkIHzpBRERE5GU0Pho8kPAAlo1YhtwXcvHjoz/iye5PomVAS5v1zhaexfy989FzWU+0XdgWf/3hr9hzcQ9MwuSmkRMRERF5BybsiIiIiLyYSqnCwNsH4l/D/oUrf7uCnyb/hGd7PIv44Hib9S4WX8SH+z9E3xV9Ef9+PGZ8NwPp59JhMBncNHIiIiKi5osJOyIiIiICAPgofdCvTT8sHLIQF567gIypGXih9wu4LfQ2m/VyynKw6MAi3PfpfYhZEIPHNz6OLae3QG/Uu2nkRERERM0LE3ZEREREVIdSoUSv+F74Z8o/cebZMzj4+EG80vcVJEYk2qyXX5GPpb8sxQNfPICW77XE5A2TsenkJugMOjeNnIiIiKjp40MniIiIiMgmhUKBu2Luwl0xd+Ht+97Gb3m/Ye2xtViXvQ7/vf5fq/UKqwrxyeFP8MnhTxCkCcLwDsMxptMYPJDwAPzV/m48AyIiIqKmhQk7IiIiInKYQqHAHVF34I6oOzB7wGycyD+BddnrsPbYWhzKPWS1Xml1KVYdXYVVR1fBX+2Poe2HYmynsRjafiiCfIPceAZEREREno9bYokawfnz56FQKBr8RURE1Ng6tOiAV/q9gl+m/4Izz57B/Pvno2dcT5t1KvQVWHtsLcavG4/If0Zi5OqR+OzwZyiqKnLPoImIiIg8HFfYEZHDBgwYgF27dqF///7YuXNnYw+HiIg8zO1ht+PFPi/ixT4v4lLxJazPXo912evw88WfISAs1tEZdUg7kYa0E2lQK9W4//b7Maz9MLQMbIlQbShCtaEI8Q2p+a82BBofjZvPioiIiMj9mLAjagRxcXE4evSo1eNdunQBAHTv3h0rVqxw17CIiIicplVIK8zsNRMze81ETmkONhzfgLXZa7Hz/E6YhMliHb1Jj+9Pf4/vT39vtV1/tb+UwDMn8UK1oQj1/d2/ayX6apf1U/lxlToRERF5PCbsiBqBWq3GHXfcYbdcQECAQ+WIiIg8WUxQDJ5MehJPJj2JvPI8fHviW6zLXocfz/4Ig8lQr7Yq9BWo0FcgpyxH1ljUSnWdxN7vk3uWEn3m14GaQCgVvKsMERERuRYTdkRERETkNpEBkZh21zRMu2saCisLsfHkRqzLXoctp7dAZ9S5vH+9SY+8ijzkVeTJqq+AwuoqPluJvtrbelVKfgQnIiIi2/hpgaiJ+uWXX7BkyRKkp6fjypUrEEIgPj4e9913H/76178iMTHRat2ioiIsWrQImzZtwvHjx1FWVobQ0FBERkaiQ4cOSElJwejRo9GyZUsAwOTJk/HJJ59I9Xft2lVnO1GbNm1w/vx5l5wrERE1T2F+YZjUdRImdZ2EUl0pNp/ajG9PfIszN86gqKoIxbpiFFYWQm/SN/ZQJQICRVVFDXpARqAmsEHberUqrfNOiIiIiDwSE3ZETYzJZMILL7yADz/8EELcegPvkydP4uTJk1i2bBkWLVqExx9/vE797Oxs3H///bh69eot/z8/Px/5+fnIzs7Ghg0bYDQaMWPGDJeeCxERkVmQbxDG3zEe4+8Yf8v/F0KgylAlJfDMybLiqpuv6xzT3XqsQl/RSGdlWVl1Gcqqy3Cl9Iqs+r4+vg3a1hugDuB9/IiIiDwcE3ZUbyYTUFDQ2KNwr4gIQOkht6t55pln8K9//QsAcO+992Ly5Mm4/fbb4e/vj8OHD+PDDz/Eb7/9hunTpyM6OhojRoy4pf6jjz6Kq1evQq1W47HHHsOQIUMQHR0Nk8mEy5cvY9++ffjmm29uqTNnzhy88MILmDJlCrKysiw+DEOj4VP7iIjI+RQKBfzUfvBT+yEmKEZWG3qjXkri1SfRZy5brCt28lk1jM6ow7Xya7hWfk1WfR+FT4O29Qb7BsNH6ePksyIiIqLamLCjeisoAKKiGnsU7nX9OhAZ2dijALZt2yYl65YtW4apU6fecjwpKQkTJ07EsGHDsGPHDjz77LMYOnQoVKqaUD979iwOHjwIAHj//ffrrKDr0aMHRo8ejXfffRdFRUXS/4+Li0NcXBwCAgIA8GEYRETUtKh91Gjh3wIt/FvIqm8SJpTqSq0n+monAXW3/ttcrr4P13AlozDiRuUN3Ki8IbuNYN9gy8k9C9t66yQFtSHQ+PAPfURERLYwYUfUhMybNw8AMGbMmDrJOjOtVov/+7//Q+fOnXHhwgWkp6dj0KBBAIDc3Fyp3L333mu1H4VCgbCwMCeOnIiIqOlSKpQI0YYgRBuCNmhT7/pCCFToK2Rv6y2uKkalodIFZyZfia4EJboSXCq5JKu+n8rP5io+a4k+82s/lR+39RIRUbPGhB1RE1FSUoKdO3cCAMaOHWuzbKdOndCiRQvk5+cjIyNDStjFxNzcSrRy5Uq8//77LhsvERER1VAoFAjQBCBAE4A4xMlqQ2fQWdzWW2cbr5WEYGl1qZPPqmEqDZWoLKtETlmOrPoqpcpqYs9Wos98LMg3CEqFh9zvhIiIyAIm7IiaiEOHDsFkMgEAJkyYgAkTJjhUr/aquttuuw39+vXD7t278cEHH2DLli0YM2YMBgwYgF69esHf398lYyciIqKG8VX5IkoVhagAefclMZqMKNGV2L1f3++39NYuaxImJ5+VfAaTAfkV+civyJdVXwFFzarJBmzrVSn5qxQREbkOrzJUbxERNfd08yYREY09AuC6zG96RcWtT8b78ssv8dBDDyEjIwPHjh3DsWPH8NZbb0GtVqNXr17485//jMmTJ0Or1Tpj2EREROQBfJQ+CPMLQ5ifvFteCCFQVl1mPdFnZ7VfUVURqo3VTj4r+QSENK4LxRdktRGgDmjQtl6tip+1iIjIOibsqN6USs94AIO3MRqN0uvFixfjnnvucaje7+9FFxcXh71792L79u1Yv349du3ahWPHjkGv12P37t3YvXs33nvvPXz33XdITEx06jkQERFR06RQKBDkG4Qg3yDEB8fLaqPKUFXvRF/tcuX6ciefVcOU68tRri/HldIrsur7+vjKSvSZjwVqAnkfPyKiZowJO6ImIqLWMj9/f/8GP6V14MCBGDhwIACgoKAAP/74I5YsWYIdO3bgzJkzGDduHA4dOtSgPoiIiIjMtCotogOjER0YLau+3qi3uq3XkSf1FlcVQ0A4+azk0xl1uF5+HdfL5e2i8FH4NGhbb7BvMHyUPk4+KyIichYm7IiaiG7dukGhUEAIgT179mDixIlOazsiIgLjxo3DuHHjMHLkSKSlpeHXX3/FqVOn0L59e6kc/4pLREREjUXto0aEfwQi/OXdq8QkTCjVlcp6Uq/5y2AyOPms5DMKI25U3sCNyhuy2wjSBDVoW6/GR+PEMyIiotqYsCNqIiIjI9GrVy9kZGRg1apVePPNNxHpgr3JAwcORFpaGgAgPz//loSd+b52Op3O6f0SERERuZJSoaxZkaYNQeuQ1vWuL4RApaHSfqKvqhhFOsv3+as0VLrgzOQrrS5FaXUpLpVcklXfT+XXoG29/mp//kGYiMgKJuyImpDXXnsNw4YNQ0lJCcaOHYtvv/0WoaGhFsvqdDosW7YMU6dOlRJtv/76K4Ca1XqWCCHw448/AqhZTde2bdtbjsfExAAAzp49CyEEP2ARERGR11AoFPBX+8Nf7Y/YoFhZbVQbq63ev8+Rbb0luhInn1XDVBoqUVlWidyyXFn1VUqVrESf+XWQbxCUCqWTz4qIyDMwYUfUhAwdOhQzZ87EwoUL8dNPP6FTp0544okn0LdvX0RERKC8vBynT5/G7t27sX79ehQWFiI1NVWq/+uvv2LKlClISkrC8OHDcddddyE6Ohp6vR7nzp3DihUrsG3bNgDAiBEjpASd2T333IMVK1bg+vXr+Nvf/oaJEyciJCQEAKBWq9GmTRv3fTOIiIiImhiNjwaRAZGIDJC3S8JoMqJEVyJ7W29xVTGMwmi/IzcxmAzIr8hHfkW+rPoKKBDsGyx7W2+IbwjUPmonnxURkXN4bcLuwoUL+Oijj7B582ZcunQJvr6+aNeuHR5++GE8/fTT8Pf3l922yWTC8ePHkZmZiczMTBw4cABHjhxBdXXNo+zT09MxYMAAJ50JeZsPPvgA4eHheOutt5Cbm4vZs2dbLRsQEAAfn7o3Ez5w4AAOHDhgtd4999yD5cuX1/n/48ePx9y5c3H27Fl8+OGH+PDDD6Vjbdq0wfnz5+tzKkRERERUDz5KH4T5hSHML0xWfSEEyvXlDdrWqzN6zq1RBASKdcUo1hXjQvEFWW0EqANsruKz+FCPWse0Ki13nRCRS3hlwm7jxo2YOHEiSkpuLimvqKhAVlYWsrKysGzZMmzevBkJCQmy2v/ss88wefJkJ42W6FYKhQKzZs3Co48+io8//hg7duzA2bNnUVxcDH9/f7Rq1Qp33nknUlJSMGrUKPj5+Ul1J0yYgJYtW2Lbtm04cOAArly5gmvXrsFgMCAqKgp33XUXxo0bh/Hjx0OprLu9IDAwEHv37sXcuXOxdetWXLhwARUVFe48fSIiIiKSSaFQIFATiEBNIOKD42W1UWWoatC23rLqMiefVcOU68tRri/H1dKrsuprfDSyEn3m14GaQCb8iMgir0vYHTp0COPGjUNlZSUCAwPx8ssvIzk5GZWVlVi9ejWWLl2KkydPYtiwYcjKykJQUFC9+xDi5uPi1Wo1unTpAr1ej6NHjzrzVKgZq/0zZM1tt92Gd999t17t+vr6YsiQIRgyZIjcoaFly5a3rKwjIiIiIu+hVWmhDdSiZWBLWfUNJgNKdCV1tupa3cZrISEoYP+zsrtUG6txvfw6rpdfl1VfqVBav2efr51tvtoQhPiGwEdZd0cNETV9XpewmzlzJiorK6FSqbB161b07t1bOnbfffehffv2eOmll3Dy5EksWLDA5nZDazp37oyPPvoISUlJ6NatG7RaLWbPns2EHREREREReTWVUoVwv3CE+4XLqm8SJpRVl9lP9NXa1vv77b96k97JZyWfSZhQWFWIwqpC2W0EaYIatK3XV+XrxDMiImfxqoRdZmYmdu/eDQCYOnXqLck6s+effx4rVqxAdnY2Fi5ciFdffRVqdf1uRNqjRw/06NHDKWMmIiIiIiKiGkqFEsG+wQj2DQZC6l9fCIEqQ5XtRJ+d1X4Ves+6JUxpdSlKq0txueSyrPpalbZB23r91f7c1kvkAl6VsNuwYYP0esqUKRbLKJVKTJo0CS+//DKKioqQnp6OlJQUN42QiIiIiIiIXEWhUMBP7Qc/tR9igmJktaE36mUl+szlinXFTj6rhqkyVCG3LBe5Zbmy6quUKsvben0deHqvNgTBvsFQKureP5vI23lVwu7nn38GUPPkzLvvvttquf79+0uv9+zZw4QdERERERERAQDUPmq08G+BFv4tZNU3moworS61/6Te///wDkvbeo3C6OSzks9gMqCgsgAFlQWy6iugQLBvcIO29ap96rcrjqgp8KqEXXZ2NgAgISEBKpX1U+/YsWOdOp7k8mXbS51zcnLcNBIiIiIiIiKqDx+lj5RsaoM29a4vhECFvsL+k3p/f6zW6ypDlQvOTB4BgWJdzcrDi8UXZbXhr/Zv0LZerUrLbb3kcbwmYVdVVYX8/HwAQHy87UeYh4WFISAgAOXl5bh06ZI7hlcvrVq1auwhEBERERERUSNQKBQI0AQgQBOAuOA4WW3oDDpZiT5z2dLqUiefVcNU6CtQoa/A1dKrsuprfDQN2tYbpAliwo+czmsSdqWlN99QAgMD7ZY3J+zKyspcOSwiIiIiIiIit/JV+SJKFYWogChZ9Q0mA0p0Jfa39eqs3+fPJExOPiv5qo3VyKvIQ15Fnqz6SoUSIb4hsrf1BvsGQ6X0mvQMOchrfiKqqm4u+dVoNHbL+/rWPNq6srLSZWOSy96qv5ycHD6lloiIiIiIiFxCpVQh3C8c4X7hsuoLIVBWXdagbb3Vxmonn5V8JmFCYVUhCqsKZbcRqAls0LZeX5WvE8+IPIHXJOy0Wq30urrafmDrdDoAgJ+fn8vGJJe9Lb1EREREREREnkqhUCDINwhBvkFoFVL/Wz4JIVBlqGrQtt5yfbkLzky+suoylFWX4XKJ7XvWW6NVaR3e1lsnKagNQYA6gNt6PYzXJOyCgoKk145scy0vrwleR7bPEhEREREREZF7KBQK+Kn94Kf2Q3RgtKw29EZ9zcMuHNzW+/tyJboSCAgnn5l8VYYqVBmqcK38mqz6Pgofu6v47G3rVSqUTj4r7+Y1CTutVouIiAgUFBTYfcpqYWGhlLDztgc8+Pj4wGAwwGg0QgjBDDt5BCEEjMaaR9f7+Pg08miIiIiIiKipU/uo0cK/BVr4t5BV3yRMKNWVWl3BZ3V1X61/G0wGJ5+VfEZhREFlAQoqC2S3EewbXO9En/l4iDYEGh/7ty/zJl6TsAOAzp07Y/fu3Th9+jQMBgNUKsunf/z4cel1p06d3DU8j6DRaKDT6WoeFV5RgYCAgMYeEhEqKiogRM1frxy5ByUREREREZErKRVKhGhrEk1yCCFQaaiUlegzl6s0eNY990t0JSjRleBi8UVZ9QteKpB9X8TmyKsSdn379sXu3btRXl6OgwcPomfPnhbL7dq1S3rdp08fdw3PIwQHB0tP1L1x4wb8/f25yo4alRACN27ckP4dHBzciKMhIiIiIiJqOIVCAX+1P/zV/ogNipXVhs6gq7Ot1+JqPyvbekurS518Vg0T7Mvf9WrzqoTdn/70J8ydOxcAsGLFCosJO5PJhE8//RQAEBoaiuTkZLeOsbEFBgZCoVDUPLWnrAyXL19GeHg4E3fkduZVnjdu3JDuO6lQKHhfSSIiIiIiIgC+Kl9EqaIQFRAlq77RZESJrqRB23pNwuSUcwnUBEKl9KoUlV1e9d3o0aMH+vXrh927d2P58uVITU1F7969bymzYMECZGdnAwBmzpwJtVp9y/GdO3dKSbzU1FSsXLnSLWN3F6VSibi4OFy5ckVK2pWVlUGhUPDeYeRW5vsomikUCsTFxUGp5I1MiYiIiIiIGspH6YMwvzCE+YXJqi+EQLm+XPa23sKqQlQbqwEAodpQJ55Z8+BVCTsAWLhwIfr06YPKykqkpKTglVdeQXJyMiorK7F69WosWbIEAJCYmIjnn39edj+/T+T9+uuv0usffvgB58+fl/6dkJCAvn37yu7L2YKCgm5J2gE1gWgweM4NMcm7mJN1tZ/2TERERERERI1HoVAgUBOIQE0g4oPjZbVRZaiquR+f3rPux+cJvC5hd+edd+Krr77CxIkTUVJSgldeeaVOmcTERGzevLlByYEpU6ZYPfbuu+/e8u/U1FSPStgBNUm7xMRElJWVoaSkBNXV1dJTOoncwcfHBxqNBsHBwQgMDOTKOiIiIiIiomZGq9IiOjC6sYfhkbwuYQcAw4cPx5EjR7Bw4UJs3rwZly9fhkajQUJCAh566CHMmDED/v7+jT3MRqdUKhEcHMyb/BMRERERERERuZFC1L5JFDULly9fRqtWrQAAly5dQny8vKWpRERERERERERkmyvyMNxjRkRERERERERE5EGYsCMiIiIiIiIiIvIgTNgRERERERERERF5ECbsiIiIiIiIiIiIPAgTdkRERERERERERB6ECTsiIiIiIiIiIiIPwoQdERERERERERGRB2HCjoiIiIiIiIiIyIOoGnsA5HwGg0F6nZOT04gjISIiIiIiIiJq3mrnXmrnZBqCCbtmKC8vT3rdo0ePRhwJEREREREREZH3yMvLQ9u2bRvcDrfEEhEREREREREReRCFEEI09iDIuaqqqnD06FEAQGRkJFSqpruQMicnR1olmJmZiZiYmEYeEbkT5997ce69G+ffe3HuvRvn33tx7r0X5967Naf5NxgM0m7HLl26QKvVNrjNppvJIau0Wi2SkpIaexhOFxMTg/j4+MYeBjUSzr/34tx7N86/9+LcezfOv/fi3Hsvzr13aw7z74xtsLVxSywREREREREREZEHYcKOiIiIiIiIiIjIgzBhR0RERERERERE5EGYsCMiIiIiIiIiIvIgTNgRERERERERERF5ECbsiIiIiIiIiIiIPAgTdkRERERERERERB5EIYQQjT0IIiIiIiIiIiIiqsEVdkRERERERERERB6ECTsiIiIiIiIiIiIPwoQdERERERERERGRB2HCjoiIiIiIiIiIyIMwYUdERERERERERORBmLAjIiIiIiIiIiLyIEzYEREREREREREReRAm7IiIiIiIiIiIiDwIE3ZEREREREREREQehAk7IiIiIiIiIiIiD8KEHTXYhQsX8Pzzz6Njx44ICAhAeHg4kpKS8M9//hMVFRVO6+f777/HqFGjEB8fD19fX8THx2PUqFH4/vvvHW7DYDDg448/Rr9+/RAZGQk/Pz+0a9cO06dPx2+//ea0sXoTV85/RUUF1q9fjyeffBJJSUkICwuDWq1GREQEevfujdmzZyM3N9duOwMGDIBCoXDoixznyrlfuXKlw3O2cuVKu+1VVFRg/vz5SEpKQnh4OAICAtCxY0c8//zzuHDhQoPG6q1cNf/nz593eO7NX23btrXYFmPfea5fv45NmzZh1qxZGDJkCFq0aCF97yZPnuySPr/88kukpKQgOjoaWq0Wbdq0wcSJE5GRkeFwG4x953DX/BcXF+OLL77AlClT0LVrV4SEhECtViMyMhLJyclYsGABioqK7LbTtm3bBr130E3umvvZs2c7/H69c+dOu+3l5+dj1qxZ+OMf/4jg4GAEBwfjj3/8I2bNmoWCggKnjbu5c8f879y5s97X/QEDBlhsi7HvPFlZWXjzzTeRkpIi/f4dGBiIxMRETJkyBT///LPT++R13wJB1ABpaWkiODhYALD4lZiYKE6dOtWgPoxGo5g6darVPgCIadOmCaPRaLOdvLw8kZSUZLUNX19fsXTp0gaN1du4cv4PHz4sAgMDbc47ABEcHCxWr15ts63+/fvbbcf8RY5xdeyvWLHC4TlbsWKFzbZOnTol2rdvb/NnaOPGjbLH6o1cOf/nzp1zeO7NXykpKRbbYuw7j63vXWpqqlP7qqioEEOHDrXan1KpFLNnz7bbDmPfedwx/999953w9fW1G6vR0dFix44dNttq06aNQ3Hfpk0bp4y9OXNX7L/xxhsOv1+np6fbbGvfvn0iOjraav2YmBixf/9+p429OXPH/Kenp9f7uv/4449bbIux7xz9+vVz6Ps4adIkodPpGtwfr/vWqUAk06FDhzBu3DhUVlYiMDAQL7/8MpKTk1FZWYnVq1dj6dKlOHnyJIYNG4asrCwEBQXJ6ufVV1/F8uXLAQB33nknXnrpJbRr1w5nzpzB/PnzcejQISxbtgyRkZF45513LLZhNBoxatQoHDhwAAAwevRoPPbYYwgPD8f+/fvx9ttv4/r165g+fTri4uIwZMgQed8UL+Lq+S8pKUFZWRkAoE+fPnjwwQfRvXt3REREIC8vD+vXr8fSpUtRUlKCRx55BMHBwXbnrXv37lixYoXsc6Ya7op9sy1btiA2Ntbq8fj4eKvHSktLMWzYMJw6dQoA8Nhjj2H8+PHw8/NDeno65s6di5KSEowbNw579uxBt27dGjRWb+Dq+Y+Li8PRo0ftlps7dy5WrVoFAEhNTbVZlrHvXK1bt0bHjh2xdetWl7T/l7/8Bd999x0AIDk5GTNnzkRsbCyOHj2Kd955B2fOnMHs2bMRExODxx9/3GIbjH3XcdX8FxQUQKfTQalUYtCgQXjggQfQtWtXhIaG4vLly/jiiy/w1VdfITc3Fw8++KBD8zZy5Ei8/fbbVo9rNBqnnkNz5+rYN7N3DbjtttusHrt06RKGDx+OvLw8qFQq/O1vf8ODDz4IANi0aRPef/995OTkYPjw4Th48KDNzxB0K1fNf1JSkkPX/RkzZmDXrl0A7F/3GfsNc/XqVQBAbGwsHnroIfTr1w+tW7eG0WhERkYGFixYgCtXruDTTz+FXq+XPo/Jxeu+DY2dMaSmy5x5V6lUYu/evXWOz58/X8pmv/HGG7L6OHHihFCpVAKA6N69u6ioqLjleHl5uejevbs0DmsrOpYvXy6N5amnnqpz/NSpU9JqkYSEBKHX62WN15u4ev737NkjHn74YfHbb79ZLbNhwwahUCgEANGuXTthMpksljOvsunfv3+9x0F1uSP2a6+wO3funOyxvv7661I78+fPr3N8z5490nsMfz4c4475t8dgMIjY2FgBQAQFBdW5Npgx9p1n1qxZYuPGjSI3N1cIcetKSGeustm+fbvU7vDhw4XBYLjleF5enmjdurUAIEJDQ8WNGzcstsPYdy53zP/q1avF9OnTxYULF6yW+eijj6R+k5OTrZYzr7Jx9upPb+Su2K+9wq4hHn30UamdNWvW1Dn+1VdfuWT8zZW75t+ewsJCaQVuQkKC1XKMfecYNmyY+Oqrr+pcg83y8vJEYmKi9LOwa9cu2X3xum8bE3Yky/79+6WAmD59usUyRqNRdOrUSQqu6urqevfz5JNPSv1kZGRYLJORkWEzGSeEkMYRHh4uysvLLZaZO3euzQs83eSu+XfEmDFjpLEcPHjQYhn+0u487pp7ZyTsqqurRUhIiAAgOnXqZHXb/PTp06W+MjMzZfXlLTwl9n/44QdpHFOmTLFajrHvOq76pW3IkCFSQvjSpUsWy3z55Zc2P5Qz9l2vsX5pF0JIf6hVKpUiLy/PYhn+0u46npywy8nJEUqlUgAQgwcPtlpu8ODB0s9QTk6O7P68UWPF/scffyz1+49//MNqOca++2zcuFGak2eeeUZ2O7zu28aHTpAsGzZskF5PmTLFYhmlUolJkyYBAIqKipCenl6vPoQQ+PbbbwEAHTt2RK9evSyW69WrFzp06AAA+PbbbyGEuOX4yZMnkZ2dDQB4+OGH4e/vb7Gd2jdO/eabb+o1Vm/jjvl3VHJysvT6zJkzLumDbvKkubcnPT0dxcXFAGq2TiiVli95jH3Hecr8f/rpp9Jre9tiqOkoLS3F9u3bAQD333+/1a1qo0ePRnBwMADLMcvYb97MN5s3mUw4d+5c4w6GPEpaWhpMJhMA69co4Gbsm0wmpKWluWNo1EDm675CoZA+Y1DjcsbvYLzu28eEHclifipMQEAA7r77bqvl+vfvL73es2dPvfo4d+6ctH++dju2+rly5QrOnz9vcaz22omOjkZiYqKssXobd8y/o3Q6nfTax8fHJX3QTZ409/Y4Gvvdu3eXEvmMfds8Yf5LS0ulxGHbtm1x7733OrV9ajwHDhxAdXU1ANsxq9FopD/iHThwAHq9/pbjjP3mjdd9ssbR2PeEzyjkuDNnzmDv3r0AgH79+vEJrx7CGe/FvO7bx4QdyWJesZaQkACVyvqzSzp27FinjqOOHTtmsZ369iOnnUuXLqG8vNzhsXobd8y/o8w3nwWATp062Sx7/Phx9OzZE6GhodBqtYiPj8fIkSOlG6aSfY0x91OmTEFsbCw0Gg1atGiBXr164bXXXsOVK1ds1nM09lUqFRISEpwy1ubOE2J/7dq1qKioAAA8+uijUCgUdusw9psGOddrg8Eg3WC6vu0w9psm83VfrVZL82fNTz/9hG7duiEoKAj+/v647bbbMG7cOGzYsKHOjgzyHCkpKYiKioJGo0FUVBQGDBiAefPmobCw0GY9c+yHhIQgOjraarmYmBhptQ5j3/PJWVXP2He9+vwOZg2v+/YxYUf1VlVVhfz8fAC2n84IAGFhYQgICABQkwSrj8uXL0uv7fXTqlUr6fXv+5HTjhDilnp0k7vm3xGHDx/G5s2bAQBdunSxe7G4du0aMjMzUVxcDJ1OhytXriAtLQ2pqano1q1bk3njbiyNNfc7d+5ETk4O9Ho9CgoKsH//fsyZMwcJCQlYvHix1XrmGA4ICEBoaKjNPsyxn5eXd8tfDOkmT4n92h/cHd0Ww9hvGpx93WfsNz+bN2/GkSNHAACDBw+Wki7WnDt3DocPH0ZZWRkqKytx/vx5rFmzBqNGjUK/fv3s/uGHGse2bduQl5cHvV6PvLw87Nq1Cy+//DJuv/126XY5lphj35Env5pj3xWfT8l5hBD4/PPPAQB+fn546KGHHKrH2Hctk8mEefPmSf9++OGHZbXD67591v88TmRFaWmp9DowMNBu+YCAAJSXl6OsrMxl/Zh/MQRQpx9ntUM13DX/9uh0OkybNg1GoxEAMGfOHKtllUolBg4ciKFDh6Jr166IiIhAaWkpfvnlFyxevBjZ2dk4duwYkpOTkZmZidatWzt1rM2Fu+f+9ttvx+jRo9G7d2/p4nr27FmsW7cOa9euRVVVFZ544gkoFAqLj3g3j9fRsZqVlZXB19dX1pibM0+I/YsXL0p/0b3nnnvsrq5h7Dctzr7uM/ablxs3buDpp58GULP96s0337RaVqPRYMSIEUhJScEdd9yBkJAQFBUVISMjA//+979x6dIl7NmzB4MGDUJGRgZCQkLcdRpkQ5cuXfCnP/0JPXr0QGxsLPR6PU6cOIEvvvgCW7duRVFREcaMGYONGzdiyJAhderLiX1+3vdsP//8M86ePQsAGDVqFIKCgmyWZ+y7xwcffIDMzEwANfeXs3WbFFt43bePCTuqt6qqKum1RqOxW94cBJWVlS7rp3ag/b4fZ7VDNdw1//bMmDEDWVlZAGqWxw8fPtxq2fXr11v8a0u/fv3w1FNP4bHHHsMnn3yCa9eu4bnnnsP69eudOtbmwp1zP2rUKKSmptbZ7piUlIRx48Zh06ZNGD16NPR6Pf76179ixIgRdba/mMdbn7HKHa838ITY//zzz6WtLI6srmPsNy3Ovu4z9psPo9GIRx55BBcuXAAAvPbaa7jzzjutls/MzLQY+wMGDMCMGTMwduxYbN26FdnZ2fjHP/6B999/31VDJwc999xzmD17dp3/37NnT0yaNAmLFy/GE088AaPRiGnTpuHMmTPQarW3lJUT+4x7z/bZZ59Jrx257jP2XW/Xrl34n//5HwBAVFQU/v3vf8tui9d9+7glluqt9sXRfJNIW8xLTf38/FzWT+3lrL/vx1ntUA13zb8tc+fOxbJlywDUJHAWLVpks7ytpdFqtRrLli2TnjT8zTffcJm8Fe6c+5CQEJv3JnvwwQcxa9YsAEBFRQWWL19ep4x5vPUZK8DYt8YTYt/8wd3X1xfjxo2zW56x37Q4+7rP2G8+nnrqKfzwww8Aat7/X3/9dZvlbcV+UFAQ1qxZg/DwcADAkiVLHPpZIdeyt41t+vTpmDp1KgDg6tWrWLduXZ0ycmKfce+5qqqq8PXXXwMAYmNjcf/999utw9h3rd9++w2jRo2CwWCAVqvF119/jaioKNnt8bpvHxN2VG+1lyI7sozc/PAGR5aoyu2n9gMift+Ps9qhGu6af2sWL16MV155BUDNTUW/++67W5Y2y6FSqaQPgcCtN1Glmxp77n/v8ccfl5J6lubMPN76jBVg7FvT2POfmZmJ48ePAwBGjBhh95c7RzD2PYuzr/uM/ebh5ZdfxpIlSwDUrI5ds2ZNg58OGxISgvHjxwOo+Rkwr9gnzzZ9+nTptbOu+4x7z5WWloaioiIAwCOPPOKUp0Iz9uU7d+4cUlJSUFhYCB8fH6xevRr33ntvg9rkdd8+Juyo3rRaLSIiIgDA7oMZCgsLpaCofaNIR9S+8aS9fmrfePL3/chpR6FQOHTDWm/krvm35Msvv8RTTz0FAGjTpg22bduGFi1aNLhdAOjcubP0mqtsLGvMubckKipKGo+lOTPHcHl5ufSBzxpz7EdGRnr8vSwaS2PPv5yHTTiCse85nH3dZ+w3fe+++650Y/O77roLmzZtctqKCMZ+02Nvzsyx78iD48yx76rPKNRwvO57jqtXr+L+++/H1atXoVAo8J///AcjR45scLu87tvHhB3JYn6jO336NAwGg9Vy5tUQQP0f91z7zbR2O/XtR047rVq1avCqrebMHfP/e2lpaZg0aRJMJhNiYmKwfft2pyZVbW2/pJsaY+5tsTVvjsa+wWDAmTNnALh2rM1BY82/Xq/H6tWrAdQkah944IEGt2nG2Pcccq7XKpUK7du3l9UOY9+z/etf/5Luk9SpUyds2bLF7lNh64Ox3/TYmzNz7BcXFyM3N9dquZycHJSUlABg7Huq69evY8uWLQBqkvV33HGH09pm7NdPfn4+Bg0aJD3843//93+dlkDldd8+JuxIlr59+wKoyWIfPHjQarnay9X79OlTrz5uu+02xMbG1mnHkp9++gkAEBcXh7Zt21ocq712cnNzcfLkSVlj9TbumP/atm/fjocffhgGgwERERHYtm0b2rVrJ7s9S44dOya9Nv/cUV3unntb8vLykJ+fD8DynDka+1lZWdJqMMa+bY01/5s3b0ZBQQEA4M9//jNUKuc9M4ux7zmSkpKkG0bbitnq6mrs27dPqqNWq285zthv+j777DPMmDEDQM0Tw3/88Uenrag3Y+w3PfbmzNHYd8dnFGqYVatWSX8YdObqOoCxXx/FxcUYPHiw9D2bN2+e9LRuZ+B13wGCSIb9+/cLAAKAmD59usUyRqNRdOrUSQAQoaGhorq6ut79PPnkk1I/GRkZFstkZGRIZZ566imLZczjCA8PF+Xl5RbLzJ07V2pnzZo19R6rN3HX/AshxJ49e0RAQIAAIEJCQkRWVlZDhm6RXq+XxgpAXLx40el9NBfunHt73n77bWksb731Vp3jOp1OhISECACiU6dOwmQyWWxn+vTpUjuZmZkuGWtz0VjzP2rUKKnfQ4cONbg9M8a+fOfOnZO+b6mpqU5rd8iQIQKAUKlU4tKlSxbLfPnll1Lf8+fPr3Ocse96rpp/IYRYt26d8PHxEQBEfHy8OHfunFPbF0KIoqIiERERIQAIf39/UVVV5fQ+mitXzr0906ZNk/r+7LPP6hzPyckRSqVSABCDBw+22s7gwYMFAKFUKkVOTo4rh9zsuGv+77zzTgFAqNVqcf36dae1y9h3XHl5uejTp48036+++qpL+uF13zYm7Ei2fv36ScG1d+/eOsfnz58vBcQbb7xR53h6errdN/wTJ05IH9q6d+8uKioqbjleUVEhunfvLo3j5MmTFttZvny51NfTTz9d5/jp06dFcHCwACASEhKEXq+3/w3wcu6Y/0OHDonQ0FABQAQEBIiff/653uPcsWOHKCwstHq8urpapKamSmMZPnx4vfvwNq6e+3PnzolffvnF5hg2btwoNBqNACD8/PzE5cuXLZZ7/fXXbV7g9+7dK1QqlQAg+vfvb7NPquGO2K+toKBAmusuXbo4PE7GvmvJ+aVtxYoVNn82hBBi+/btUpkRI0YIg8Fwy/G8vDzRunVrKSF848YNi+0w9l3LVfO/ZcsWKd6joqLE8ePH6z2277//vs7nxdpKS0tFSkqKNJZnnnmm3n14M1fM/ZEjR8SpU6dstrF48WKpjejoaFFWVmax3KOPPiqV+/rrr+scX7NmTaMlHJsDV8V+bf/9739lXZsZ+86j0+lu+V7NnDlTVju87jec8/aUkNdZuHAh+vTpg8rKSqSkpOCVV15BcnIyKisrsXr1aumJXomJiXj++edl9ZGYmIgXX3wR8+bNQ1ZWFvr06YO///3vaNeuHc6cOYN3330Xhw4dAgC8+OKLdfazm6WmpuI///kP9uzZg0WLFiE3NxePPfYYwsLCkJmZibfeegslJSVQKpX46KOPnLrdqrly9fyfOXMGgwcPlm4c+vbbbyMkJAT//e9/rdaJioqq82jxTz75BCNGjMCIESMwYMAAdOjQAcHBwSgrK8PBgwexZMkSaZl3VFQUFi5cWO+xehtXz/358+eRnJyM3r17Y/jw4ejatas0r2fPnsXatWuxdu1aCCEAAO+99x7i4uIstvXiiy/iq6++wsmTJ/HSSy/h9OnTGD9+PPz8/JCeno533nkHBoMBfn5++PDDD+V9Q7yMO977a1u9ejWqq6sB1LyXO4qx71w///wzTp8+Lf3bvB0dqLmn4cqVK28pP3nyZFn93HfffRg/fjxWr16NtLQ0DBo0CM899xxiY2Nx9OhRzJkzBxcvXgRQ80CCsLAwi+0w9p3LHfO/b98+jBo1CtXV1VCr1fjggw+g1+ttXvfj4+PrPDF63rx5eOSRRzB69Gj07dsX7dq1Q2BgIIqLi7F37158/PHH0s9Qhw4dMHv27HqP1Zu4Y+4PHjyIadOmITk5GUOGDEGXLl0QEREBg8GA48eP44svvsDWrVsBAD4+PliyZInVe03PmTMHP/zwA/Ly8jBhwgRkZWXhwQcfBABs2rQJCxYsAFBzw/m333673mP1Nu5676/tk08+kV7X57rP2HeeCRMmSDF33333YerUqTbfizUaDRITE2X1xeu+HY2dMaSmLS0tTVqZZukrMTHR6l/MHF1lYTQaxV/+8herfQAQU6dOFUaj0eZY8/LyRFJSktU2fH19xdKlSxvy7fA6rpz/2n+RcfTL0l9uaq+gsfXVpUsX8dtvvzn5O9R8uXLuax+39eXv7y8WL15sd6ynTp0S7du3t9pOcHCw2LhxY0O/JV7FHe/9Zj179hQAhI+PT722LjH2ncvR76f5yxJHV1lUVFSIoUOHWm1bqVQ6tEqDse887pj/N954o97X/RUrVtRpp3///g7V7d+/v9XV2XSTO+be0c98ERERYsOGDXbHvG/fPhEdHW21nejoaLFv376Gfmu8gjvf+4Wo+b0vNjZWABBhYWFCp9M5PFbGvvPU9724TZs2Ftvhdb/huIyIGmT48OE4cuQIFi5ciM2bN+Py5cvQaDRISEjAQw89hBkzZsDf379BfSiVSixfvhxjxozBkiVLcODAAeTn56NFixZISkrC9OnTMWTIELvttGjRAnv37sXSpUuxatUqZGdno7y8HLGxsRg4cCBmzpyJP/zhDw0aq7dxx/w31N///nd069YNGRkZOHbsGPLy8nDjxg34+vqiZcuW6N69O8aOHYtRo0bBx8enUcfalLhy7u+++258/vnnyMjIQFZWFnJycpCfnw+DwYCwsDD84Q9/wMCBAzFt2rQ6KyotSUhIwKFDh7Bo0SJ8/fXXOH36NKqrq9GqVSsMHToUM2fORJs2bWSN1Vu5K/ZPnTqF/fv3AwAGDRqE6Ohoh+sy9psuPz8/bN68GatWrcLKlStx+PBhFBUVoWXLlujXrx9mzJiB3r17222Hse+d3nvvPWzfvh0ZGRk4ceIE8vPzUVRUBH9/f8TGxqJnz56YMGECUlJS+LRIDzF06FAsX74cGRkZOHToEK5du4aCggIIIRAeHo6uXbvigQcewOTJkx16UnDPnj1x9OhRLFy4EBs2bMD58+cB1DzQbuTIkXjuuecQERHh4rMiObZv346rV68CAMaNGyc9kMARjP2mi9d96xRC/P89RURERERERERERNTolI09ACIiIiIiIiIiIrqJCTsiIiIiIiIiIiIPwoQdERERERERERGRB2HCjoiIiIiIiIiIyIMwYUdERERERERERORBmLAjIiIiIiIiIiLyIEzYEREREREREREReRAm7IiIiIiIiIiIiDwIE3ZEREREREREREQehAk7IiIiIiIiIiIiD8KEHRERERERERERkQdhwo6IiIiIiIiIiMiDMGFHRERERERERETkQZiwIyIiIiIiIiIi8iBM2BEREREREREREXkQJuyIiIiIiIiIiIg8CBN2REREREREREREHoQJOyIiIiIiIiIiIg/ChB0REREREREREZEHYcKOiIiIiIiIiIjIgzBhR0RERERERERE5EGYsCMiIiIiIiIiIvIgTNgRERERERERERF5ECbsiIiIiIiIiIiIPMj/A33+wOlaB7HmAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 468, "width": 630 } }, "output_type": "display_data" } ], "source": [ "# plot accuracy and loss\n", "def plot_acc_loss(history):\n", " plt.subplot(211)\n", " plt.title(\"Accuracy\")\n", " plt.plot(history.history[\"accuracy\"], color=\"g\", label=\"Train\")\n", " plt.plot(history.history[\"val_accuracy\"], color=\"b\", label=\"Test\")\n", " plt.legend(loc=\"best\")\n", " \n", " plt.subplot(212)\n", " plt.title(\"Loss\")\n", " plt.plot(history.history[\"loss\"], color=\"g\", label=\"Train\")\n", " plt.plot(history.history[\"val_loss\"], color=\"b\", label=\"Test\")\n", " plt.legend(loc=\"best\")\n", " \n", " plt.tight_layout()\n", " plt.show()\n", "plot_acc_loss(history)" ] }, { "cell_type": "code", "execution_count": 78, "id": "d37baf08", "metadata": {}, "outputs": [], "source": [ "## 模型的保存和导入\n", "from keras.models import load_model\n", "# 保存模型\n", "if not os.path.exists(save_dir):\n", " os.makedirs(save_dir)\n", "model.save(os.path.join(save_dir,'my_model1.h5'))\n", "del model # deletes the existing model" ] }, { "cell_type": "code", "execution_count": 79, "id": "97f693d9", "metadata": {}, "outputs": [], "source": [ "# 导入已经训练好的模型\n", "from keras.models import load_model\n", "model1 = load_model(os.path.join(save_dir,'my_model1.h5'))" ] }, { "cell_type": "code", "execution_count": 84, "id": "8ed6aa51", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "157/157 [==============================] - 1s 5ms/step\n" ] } ], "source": [ "## 对测试集进行预测\n", "y_pre = model1.predict(x_val)" ] }, { "cell_type": "code", "execution_count": 85, "id": "7404c18a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[9.99999523e-01 5.14970555e-09 7.45459232e-08 ... 1.05733449e-08\n", " 2.97491329e-08 1.27069583e-07]\n", " [9.99641061e-01 4.01240686e-06 1.79771632e-07 ... 5.90070250e-08\n", " 3.52832176e-05 1.62576805e-06]\n", " [9.99990106e-01 4.99658181e-09 3.94122395e-07 ... 2.74232609e-10\n", " 8.72324472e-06 7.05523917e-07]\n", " ...\n", " [2.74289258e-09 9.99999642e-01 1.03526343e-08 ... 5.83599391e-09\n", " 3.21753091e-09 1.23698143e-07]\n", " [1.02219300e-03 9.55222011e-01 1.11564932e-05 ... 2.41120160e-03\n", " 1.03101069e-04 1.39913420e-04]\n", " [8.62272088e-07 9.99952912e-01 3.76695908e-07 ... 1.22376705e-05\n", " 1.67421362e-07 6.82234759e-06]]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 20307 (\\N{CJK UNIFIED IDEOGRAPH-4F53}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 32946 (\\N{CJK UNIFIED IDEOGRAPH-80B2}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 36130 (\\N{CJK UNIFIED IDEOGRAPH-8D22}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 32463 (\\N{CJK UNIFIED IDEOGRAPH-7ECF}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 25151 (\\N{CJK UNIFIED IDEOGRAPH-623F}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 20135 (\\N{CJK UNIFIED IDEOGRAPH-4EA7}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 23478 (\\N{CJK UNIFIED IDEOGRAPH-5BB6}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 23621 (\\N{CJK UNIFIED IDEOGRAPH-5C45}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 25945 (\\N{CJK UNIFIED IDEOGRAPH-6559}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 31185 (\\N{CJK UNIFIED IDEOGRAPH-79D1}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 25216 (\\N{CJK UNIFIED IDEOGRAPH-6280}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 26102 (\\N{CJK UNIFIED IDEOGRAPH-65F6}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 23578 (\\N{CJK UNIFIED IDEOGRAPH-5C1A}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 25919 (\\N{CJK UNIFIED IDEOGRAPH-653F}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 28216 (\\N{CJK UNIFIED IDEOGRAPH-6E38}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 25103 (\\N{CJK UNIFIED IDEOGRAPH-620F}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 23089 (\\N{CJK UNIFIED IDEOGRAPH-5A31}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n", "C:\\Users\\lutin\\.conda\\envs\\TensorGPU\\lib\\site-packages\\IPython\\core\\pylabtools.py:152: UserWarning: Glyph 20048 (\\N{CJK UNIFIED IDEOGRAPH-4E50}) missing from current font.\n", " fig.canvas.print_figure(bytes_io, **kw)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABV0AAAVdCAYAAADkHukmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gU5d7G8XvTCyGd3ltoQXrvTRClWxCUI2IFwd4F3iiWg42j56iIgqBYkCIqFnoT6SX0TgiQhIQkkN72/SOySUghIbPZlO/nurzO7M4zM789w8xs7n3mGZPZbDYLAAAAAAAAAGAIO1sXAAAAAAAAAADlCaErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGcrB1AShZbnXH2roEWEnC2W+ue+eYTepASWhy3Wv2dfnFvq44cu5rs47aqA6UBJMCrnuHY7v84jxecbCvK46c+zrDfMhGdcDa7EzNr3uH47p8u/48Xnz0dAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwEAOti6grFi0aFGJbs/T01NDhgwp0W0CAAAAAAAAKD5C10IaN26cTCZTiW0vICCA0BUAAAAAAAAogwhdi8DX11eTJk2y6jbMZrOCgoKsug0AAAAAAAAA1kPoWgR+fn6aPn261bdD6AoAAAAAAACUXTxICwAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAM5GDrAlA8oaGhhWpXq1YtK1cCAAAAAAAAQCJ0LfNq165dqHZms9nKlQAAAAAAAACQCF2LJDIyUkFBQbYuAwAAAAAAAEApRuhaBJGRkZoxY4aty8jh3Llzti4BAAAAAAAAQDaEroU0b968Et2ep6dnodoxVisAAAAAAABQuhC6FtL48eNtXQIAAAAAAACAMoDQtZAWLVpUotvz9PTUkCFDSnSbAAAAAAAAAIqP0LWQxo0bJ5PJVGLbCwgIIHQFAAAAAAAAyiBC1yLw9fXVpEmTrLoNs9msoKAgq24DAAAAAAAAgPUQuhaBn5+fpk+fbvXtELoCAAAAAAAAZZedrQsAAAAAAAAAgPKE0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgRxsXQCQl9dfvEfPPHaH5fWtd7+hTX8fzrd9nVp+emhcf/Xt3lL161SRu5uzrsYn6djJC1q1fr/mfrNGl6Ku3HC7g/u20bg7e6pjm0by8/HQ1fgknToTrmW/bdPnC9coITHZkM+HmxcVFaP9+49p//5jCg4+ruDg44qJuSpJGjGir95++ykbVwhrOH8+QgsX/qz163coLCxSTk6Oql27mgYP7qGxY2+Tq6uLrUtEMXBcVxzBwce1ccMu7dp9SCdPnNPly7FydHSQfxUftW3bTKNHDVC79s1tXSYMxjm84mBfl39csyuuCxcuacmPq7Vhwy5duHBJ8fGJ8vGprJo1q6hjp5YaNKibmjSpa+sycRM4rq2H0BWlTqvmdTVl4uBCtx8zors+emuC3Fydc7zv41VJnds1Ued2TfT4hFs1fvLHWrv5QJ7rqOTuonmzH9eQAe1yvO/s7Cg/Hw91bNtID97bT3dOfE9HT1wo+oeCYbp2vc/WJaCErV27Xc89957i4hIs7yUmJis29oQOHDihxYv/1Jw501S3bg0bVoni4LiuGMaNfVE7dx7K9X5qaprOnrmgs2cuaNnSNRo2vI9ef32ynJwcbVAljMY5vOJgX1cMXLMrpq8X/qoPPvhaCQlJOd4PC4tSWFiUdu06rLi4RL388oM2qhDFwXFtPYSuKFVMJpM+futBOTo6KPxSrKr6exbYvnP7Jprz3iOyt7dTenqGvlmyUb/8uVsXw6NVq6avxo3qoSED2snX20M/zH1a7Qe8oDPnLuVaz9f/m6KBvW+RJO3ef0offfGbjp24oEqVXDWob2s9Nn6gGtWvpuXzn1f3O15VVHScVT4/iqZGDX81aFBLmzfvsXUpsJJDh07qqafeUVJSitzcXPXII6PVqVMrJSUla+XKTfrhhz905sx5PfxwkJYseV+VKrnZumQUE8d1+RURcVmSVKWKjwYN6qZ27VuoRnV/pWeka+/eo5r35XKFh0fpp+XrlJaWrvfee9bGFaO4OIdXHOzriolrdsXwySeL9Z/ZiyRJ9erV0J13DlDLwEby8HBXTMxVHT50SqtXb5OdyWTjSmEEjmtjEbqiVHn8gVvVvnVDHTlxXj//vlPPTR5WYPvnHh8qe/vMoYmfmf6V5ixcbZm3a/8p/fTbDr316lhNfeg2ubk6a8pDt+npaV/lWMfw2zpaAtfVG4M1asIspaamW+Zv+vuwVm/Yr58WvKC6tf31ylOjcq0DJWfSpHsUGNhYgYGN5efnrdDQcPXrN9HWZcFKZs78XElJKXJwsNeXXwapTZumlnldutyiunVraNaseTpz5rzmzVuuJ56414bV4mZxXFcM9RvU0lNP3a+Bt3aRvb19jnmtWzfVsKF9NGbMCzpz5rx+/WWj7rlnkDp0aGmjamEEzuEVB/u64uCaXbFs3brfErgOG9Zbr78xSY6OOWOkLl1aacKDw5WSkmqLEmEAjmvr4UFaKDVq1fDVtGdGS5KmvPylUlLTbrhMp3aNJUmRl6/mCFyze2v20qz2bRvnmn/f6J6W6adem5cjcL1m3ZaDWvzzVknShDF95e3pfsPaYB1TpoxVnz4d5efnbetSYGX79x/Tzp0HJUmjRg3I8QfcNRMmDFfDhrUlSQsWrFBqIc4bKH04riuGzz6bpsG3dc8VuF7j7VNZL7w4wfL6jz/+KqnSYAWcwysO9nXFwjW74sjIyND/zfhUktS0aT29MXNyrsA1O4YFKrs4rq2H0BWlxoev/0selVy1cPFGbd52pFDLOP1z0j97LiLfNleuJloeopXXRaJtYH1J0onTYTp5Jjzf9azasD9zm04OucZ+BWC81av/tkyPGtU/zzZ2dnYaPryPJOnKlXht27a/RGoDYB2dOgVaps+FhNmwEhQX5/CKg30NlE9btuzV2bMXJUkTJ46Ug0PeP5oCyB/DCxRBZGSkgoKCbF1GuTRySCfd1r+toqKv6uWZ3xR6ueOnLqpNYH3VrV0l3zYelVzl71vZ0v56Pt6VJEkRkbEFbiviUtb87p0C9PWPGwtdJ4Ci27Ur84E7bm4uatGiUb7tOnTICml27z6s7t3bWr02ANaR/dZEOzv6BpRlnMMrDvY1UD79/nvmHScmk0m9e7e3vB8Tc1UxMVfl5eUhLy8PW5UHlAmErkUQGRmpGTNm2LqMcsezspvenZH5tLzX3v6uSA+pmvv1Gv33nYny8/HQxLH9NPebNbnavDhleLb2uYcgiEtIlrengyp7FDygf+XKWfObNqpV6BoB3JyTJ89JkurUqV7gL+sNGmQdj9eWAVA27dhxwDLdsCHX2rKMc3jFwb4Gyqd9+45JkmrWrCL3Sq765eeNmjNniY4fD7G0ufZgrXH3DWF4ASAPhK6FNG/evBLdnqenZ4luz5ZmvjRG1ap4668dRzX/u/VFWvarH9arS4cmGje6pz54/V9qE1hfv67apbCIGNWu6asxI7pr6KAOkqR3PlqudVsO5lrH0RPn1bldEzVtVEN+Ph6KvHw1z21175g1PlXtmr5FqhNA0SQnpyg6OnNYkGrVCj7ePD0ryc3NRQkJSQoLiyyJ8gBYQUZGhj6fs8TyetDg7jasBsXBObziYF8D5VNGRoZOnzovSfL29tCbM+dq4cJfc7U7c+aCZs36SqtXb9Onn72qypV59gmQHaFrIY0fP97WJZRLXTsE6F/39FZqapqmvPxlkZfPyDDr4Wc+08o1e/T8pKF6YEwfPTCmT4426/86qFkf/5Rn4CpJv67arc7tmsjBwV7Tn71TT+RRR8N6VXXfnVkP3Krk7lLkWgEUXnx8omXazc31hu1dXTP/iEtISLJmWQCsaP78n7R/f2avmgEDu6hly/xvU0bpxjm84mBfA+XT1asJysjIkCQdOxai4OAT8vf31nPPj1fPnu3k7Oyo4OATeu/dBdq375j27DmiV175SB999KKNKwdKFwbLgs04Otrr47cflJ2dnT764ncdOhZ6U+sJaFRDY0d2V4uA2nnO79S2scbf3Vs1qub9JL7Pv16t8xcvS5IeHNtPcz94TC2b1pajo718vCppzIjuWrX4Nbm7OSslJfNJq64uTjdVK4DCSU5OsUwX9JTUa5ycMtskJaXcoCWA0mj79gN6/70FkiRfX0/NmPGYjStCcXAOrzjY10D5lJiY9cNIcnKKXF2d9dVXr+uOO3rJ07OSXFyc1aFDC83/KkhNm9aTJK1etc0yJAGATISusJnnJw1T00Y1FRIaqTc/XHpT6+jaIUDrls7QkAHtdCEsWhOe/J/qtXtMlRver8adntCTr85TQmKy7hrWVRtXBKlZ45q51nHlaqLumviewv95UNa9I7tr+x9vK/bEAoXu+0xffPiYqlXx1vR//6CYK/GSpKvx/DoPWJOzc9YPG6mpaTdsf+0HERd+EAHKnOPHQ/TE5DeVlpYuZ2cnfTj7Bfn6etm6LBQD5/CKg30NlE/Zj21JGj26v+o3yP23tIuLs6Y+Odby+reVm61eG1CWELrCJpo0rK5nHx8qSXpm+ldKSEwu8jqcnBz01UeT5eXprrCIaPUeMV3fLduiiMgrSktL1/mwy5qzcLUG3vm6EpNSVKOajz5//9E817XnwBl1ue1lfTL/D4VHxOSYt3PvSY18YJbe++RneVTKvG0qJja+yPUCKDx396xbFBMSEgtomenar/Fubgz9AZQloefC9OCEaYqNjZO9vZ3ef/9ZdejQ0tZloZg4h1cc7GugfMp+bEtS126t823bpUsry0P0Dhw4Yc2ygDKHMV1hE088OFjOzo46dTZcrq5OGn1H51xtmmcbLqB31+aq6p/5cLGVq/coITFZA3vdoprVfSRJn8z/09JT9XqHj5/Xd8u26IExfdS2VQMFNquj4MMhudqFRcTomekL9Mz0Barq7ymPSq6KiIzVlauZXyBrVvOxDCtw+CaHQgBQOM7OTvLy8lBMzFWFhUUV2DY2Ns4yNly1an4lUR4AA4SHR+mBB6YpIuKyTCaTZr45Rf365/4+gLKHc3jFwb4GyicnJ0f5+FTW5cuZD8qrXj3/Y9bZ2Ule3pUVeSna0h5AJkJX2ISTk6MkqUHdqlrw8RM3bP/S1JGW6abdpiokNFkBjWpY3tt74EyBy+8JPm15wFaThjXyDF2zC78UmyvEbRNY3zK9c9/JG9YMoHgaNaqjnTsPKiTkotLS0i2/oF/v1KmsH0EaNsx7bGcApUv05St6cMI0nTsXJkl69bWHNXx4XxtXBSNxDq842NdA+dSoUR1t335AkpSenlFg24z0dEmSvQM3UwPZcUSgzEr758QuSQ72eX+5s8x3zJqffbmiGDGko2X6x5//vql1ACi8du2aS5ISEpJ08GD+tyrt2BFsmW7btpnV6wJQPFevxuvBidN14sQ5SdIzz4zX2LFDbFwVjMY5vOJgXwPlU/v2zS3ToefC820XF5eg6OirkqSqVXytXhdQlhC6wiYeefYzudUdW+B/Mz9YYml/691vWN4PCY2UJJ05d8kyv2vHgAK316NT1he7s9mWK6ymjWtq9O2Ztzyu2RSsE6fDirwOAEXTP9ttxkuWrM6zTUZGhpYvXydJqlzZXZ06tSqR2gDcnMTEZD3ycJAOHcy8Y+TRR+/SQw+PsnFVsAbO4RUH+xoonwbe2sUyvXp1/p2OVq/6W2azWZLULltQC4DQFWXY+i0HFf/PuFAPjeuvFgF536Y0sPctGnpre0nS+YuXte/g2VxtalT1znc7Nav76IfPn5ajo4OSklL0zPSvDKgewI20atVE7du3kCQtWbJKe/YcydXmyy+X6+TJzN5y998/VI6OjJoDlFYpKamaPPlN7d59WJJ0//136Mmnxtm4KlgL5/CKg30NlE8BAfXUo2dbSdKvv27W1q37c7W5dClas2cvkiQ5Ojpo5EiGCgKy42qHMiv2SoLe++RnTXvmTlX2cNXapdP16fw/tWbzAcXExquKX2XdPrCdHrinj+ztM39feO2d7yy/wmX3nzcnyM+nspb/vl27959W7JV4+flUVu9uLTRxbD95VnZTenqGJr/0hY6dvFjSHxXZXBsz7Jro6KzB2s+evailS3P2sBg5sn+J1QbjvfLKQxoz5nklJaVowoRpevTRO9WpU6CSklK0cuVGff/9H5KkevVq6oEHhtu2WNw0juuK4Zln3tWWzXskSZ07t9Ko0QN07FjuH0KvcXR0UP36NUuqPFgB5/CKg31dcXDNrlheemmC9u09qitX4vXYozN1//23q2evdnJxdtL+4OP6fM4Sy0P0pky9V1WrMrxAWcRxbT0mc14JFMott7pjbV1Cob3y5Ei98lTmLYe33v2GNv19OM9277w2TpMm3Co7u/w7bqekpGn6rO81e87KPOcv+fJZDe7XJt/lo6Kv6slX52vJL6V3LNeEs99c984xm9RhbS+++IGWLVtb6PZHj/5sxWpspcl1r8vnvr5m7drteu659xQXl5Dn/Hr1amrOnGmqW7dGnvPLtoqxrzmupev3tVlHbVSH9TQNGFqk9jVqVtHatXOtVI1tmXT9sEjl89iWKvo5XKoo53GJfV1R9jXXbOn6fZ1hPmSjOkrGrl2H9OTUWYqMjMlzvslk0iOPjtbUqfeWbGElwM50/XAJHNdSeT2updzn8eKjpyvKvBde/1rfLdusf93TR106BKhOTT+5uTopLj5Jp86Ga9O2I/rimzUFjsM6638rdOzURXXrEKBaNXzk4+WhmCvxOh0SoV/+3KX5361TVHRcCX4qANf07dtRK1Z8pAULVmj9+p0KD4+Uo6OD6tSprkGDumvcuCFydXWxdZkAgDxwDq842NdA+dSuXXOt+Hm2vvl6pdas2abQ0AilpqbJ399bHTu20NhxQ9S8eQNblwmUSvR0rWDKUk9XFE1F6ekKqaL0pIDEvq5Iyn9PV2SpSD1dwXm84mBfVxwVq6drRVZRerriGuN7uvIgLQAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABjIZDabzbYuAgAAAAAAAADKC3q6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIAdbF4CSdszWBcBqmuR45V73PhvVAWuLP7vwunc4rsuvJte9Zl+XXzn3tVmHbVQHSoJJza57h2O7/OI8XnHk3NcZ5kM2qgPWZmdqft07HNflF+fwiuX6/V189HQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgRxsXUBZsWjRohLdnqenp4YMGVKi2wQAAAAAAABQfISuhTRu3DiZTKYS215AQAChKwAAAAAAAFAGEboWga+vryZNmmTVbZjNZgUFBVl1GwAAAAAAAACsh9C1CPz8/DR9+nSrb4fQFQAAAAAAACi7eJAWAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADORg6wJQPKGhoYVqV6tWLStXAgAAAAAAAEAidC2SyMhIBQUF2bqMHGrXrl2odmaz2cqVAAAAAAAAAJAIXYskMjJSM2bMsHUZAAAAAAAAAEoxQtdCmjdvXoluz9PTs1Dtzp07Z+VKAAAAAAAAABQFoWshjR8/3tYl5ImxWgEAAAAAAIDShdC1kBYtWlSi2/P09NSQIUNKdJsAAAAAAAAAio/QtZDGjRsnk8lUYtsLCAggdAUAAAAAAADKIELXIvD19dWkSZOsug2z2aygoCCrbgMAAAAAAACA9RC6FoGfn5+mT59u9e0QugIAAAAAAABll52tCwAAAAAAAACA8oTQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBHGxdAGCk8+cjtHDhz1q/fofCwiLl5OSo2rWrafDgHho79ja5urrYukRc5/UX79bTj91ueT3o7pna9PeRfNvXqeWnh8b1U5/uLVS/ThW5uznranySjp28qFXr9+uLb9bqUtSVPJd9+ckReuWpkUWqb+YHS/Xmh8uKtAyMx7FdcbCvK653Z32luXOzzrdfLXhdnToF2rAiFEdUVIz27z+m/fuPKTj4uIKDjysm5qokacSIvnr77adsXCGsgXN4+Xb/fa9qx46DRVrmq69eV8dOLa1UEUoKx3b5xjXbeghdUW6sXbtdzz33nuLiEizvJSYmKzb2hA4cOKHFi//UnDnTVLduDRtWiexaNa+jJyYOKnT7MSO66T9vPSA3V+cc7/t4VVLndo3VuV1jPT5hoP41+X9au/mAITUeP3XRkPXg5nFsVxzs64rr8OFTmj9/ha3LgIG6dr3P1iWghHEOx/Xs7OxUt151W5eBYuLYLv+4ZlsPoSvKhUOHTuqpp95RUlKK3Nxc9cgjo9WpUyslJSVr5cpN+uGHP3TmzHk9/HCQlix5X5Uqudm65ArPZDLpo7cmyNHRQRGXYlXF37PA9p3bN9Zn7z0se3s7padn6Jslm/TLn7t1MTxatWv6auyoHhoyoK18vT30/dwn1WHASzpz7lKOdXy+cI2Wr9xR4Hbs7e30xw+vyLOym2KvJOjnP3YV+7Pi5nFsVxzs64orIyND0177RGlp6fL19VRUVKytS4LBatTwV4MGtbR58x5blwIr4RxeMbz51hNKSEgqsM3Jk6F6+ql3JUmdOweqalXfkigNVsKxXfFwzTYWoSvKhZkzP1dSUoocHOz15ZdBatOmqWVely63qG7dGpo1a57OnDmvefOW64kn7rVhtZCkxx8YqPatG+rIifP6+fddem7y0ALbP/v4HbK3zxyG+pnpC/T5wjWWebv3n9ZPv+3UW6+O0ZSHbpObq7OeeGiwnpm2IMc6LkVdyXfogWsG9m4lz8qZXxaWrdyupOTUm/l4MAjHdsXBvq64Fi74RcHBx9WgQS31H9BJcz5bYuuSYIBJk+5RYGBjBQY2lp+ft0JDw9Wv30RblwUr4RxeMdSqVfWGbVas2GCZHja8txWrQUng2K4YuGZbDw/SQpm3f/8x7dyZObbQqFEDclwIrpkwYbgaNqwtSVqwYIVSU9NKtEbkVKuGr157ZpQkaerL85VSiP3RqV1jSVLk5as5Atfs3pq9PKt920Y3Vdu9I7tbphct2XxT64AxOLYrDvZ1xXXhwiXNnr1IkjTj/x6VoyP9AcqLKVPGqk+fjvLz87Z1KbAyzuG4JiMjQ7/8vFGS5ObmogEDuti4IhQHx3bFwTXbeghdUeatXv23ZXrUqP55trGzs9Pw4X0kSVeuxGvbtv0lUhvy9sHr4+VRyVVfL96kzdvyf2hWdk7//CF+9rohA7K7cjXR0pPV6Sb+cPeo5KIhA9tKkk6HRGjL9qNFXgeMw7FdcbCvK66goM+UkJCk4SP6qGNHHrQClEWcw3HN1q37FR4eJUm69daucr3uOQwoWzi2geKjO0ERREZGKigoyNZl4Dq7dh2SlPlraosW+fdu7NAh6wnIu3cfVvfuba1eG3IbOaSjbuvfRlHRV/XyzEWFXu74qYtqE1hfdWv759vGo5KL/H0rS5KO3cQDsEYM6WR5SNe3S7cUeXkYi2O74mBfV0y/rdys9et2ytPLQy88/4CtywFwkziH45qfflpvmR42rLfN6oAxOLaB4iN0LYLIyEjNmDHD1mXgOidPnpMk1alTXQ4O9vm2a9CgVq5lULI8K7tp1ozMJyO+9vb3ioqOK/Syc79eq/++86D8fDz04Ni++uKbtbnavDhluGX6i69zz78RhhYoXTi2Kw72dcVz5Uqc3nzzC0nSs8/eL2+fyjauCMDN4hwOSYqPT9Sa1dskZT6Ip2Mn7l4o6zi2geIjdC2kefPmlej2PD0LfpI7MiUnpyg6OvN28mrVCn4ypqdnJbm5uSghIUlhYZElUR6u88ZL96haFS/9teOovvpuw40XyGbBDxvUtUMTjR3dQx+8Pl5tAuvp11V7FBYRo9o1fTVmRDcNHdRekvTORz9p3ZaDRVp/nVp+6taxiSTprx1HdTokokjLw1gc2xUH+7pimjXrK126FK22bZtp9Oi8b1kEUPpxDsc1q/7cqoSEJEnSHUN7yWQy2bgiFAfHNmAMQtdCGj9+vK1LQB7i4xMt025urjds7+qaeTG49oUAJadrhyb61z29lJqapqkvzy/y8hkZZj38zBytXLNHz00aqgfG9NEDY/rkaLPhr0Oa9fGKIgeukjRmZDfZ2WUOc/3Nj/RytTWO7YqDfV3x7Nx5UD8uXi0HB3vN+L9H+cMcKMM4h+MahhYoXzi2AWPwIC2UacnJKZbpwjzx2Mkps01SUsoNWsJIjo72+ujtCbKzs9PHX/yhQ8dCb2o9AY1q6N6R3dUioFae8zu2baTxd/dS9apFf+riPcO7SZISk1K09NdtN1UfjMOxXXGwryuWlJRUTXvtE5nNZo0ff4eaNKlr65IAFAPncEhSWFiktm/P7PRwyy1NVL9+TRtXhOLi2AaMQU9XlGnOzk6W6dTUtBu2T0nJbOPi4nSDljDSc5OGqmmjmgoJjdSbHy67qXV07dBEi794Wl6e7jp77pKC3vtRazcd0OWYeFXxq6whA9rqtWdG6c5hXdStU4CGjvu3Dh8/X6h1d2jTUE0aVpck/fLnbl25mniDJWBtHNsVB/u6Yvnssx916lSoatTw16TJ99i6HADFxDkckvTzig3KyMiQJA0f0ecGrVEWcGwDxqCnK8o0d/esWx0SEm4clCUmZt7u4ObmYrWakFOThtX17ON3SJKemb5ACYnJRV6Hk5OD5n80SV6e7gqLiFGfEf+n75b9pYjIK0pLS9eFsGh9vnCNbr1zphKTUlSjmo/mvP9wodd/76isB2h9u5ShBUoDju2Kg31dcZw6Gao5ny2RJL366kPsQ6Ac4BwOSfppReazGpycHDV4cPcbtEZZwLENGIOerijTnJ2d5OXloZiYqwoLiyqwbWxsnGWMmWrV/EqiPEia/OAgOTs76tTZcLm5Omv0HZ1ztWmebbiAXl2bq6q/lyRp5eo9SkhM1oBerVSzuo8k6ZP5fyr8Umye2zp8/Ly+W7ZFD4zpo7atGiiwWR0FHw4psD5HR3uNur2TJCk8IkarNuy/mY8Jg3FsVxzs64pj/lcrlJqaptq1qyoxKVm//ropV5vjx7PO2dv+DlZkZIwkqU+fDvwhB5RCnMNxIPiETp7IfGJ9797t5elZycYVwQgc24AxCF1R5jVqVEc7dx5USMhFpaWly8HBPs92p05ljSPasGHtkiqvwnN2cpQkNahbVV99POmG7V+aOsIy3azbUwoJTVbTRjUs7+07cKbA5fcEn9EDYzKnmzSsfsPQdXC/NvL19pAkff/TX8rIMN+wRpQMju2Kg31dMaSkpEqSzp0L1zNPv3fD9v/73w+W6dVrPiN0BUopzuEVW/YHaA0fztAC5QnHNlB8DC+AMq9du+aSpISEJB08eCLfdjt2BFum27ZtZvW6YJy09AzLtL193hf7axwds+anpaffcN33jsy6BWrRki03UR2shWO74mBfA0DZxTm84kpNTdPKlZl3Lfj4VFaPnm1tXBGMxLENFB+hK8q8/v2zbldfsmR1nm0yMjK0fPk6SVLlyu7q1KlVidQG6ZFn58i97n0F/jfzg6WW9oPunml5PyQ0UpJ05lyEZX63jgEFbq97p6aW6bPnLhXY1serkm7tc4skaf/BszfsFYuSxbFdcbCvK4a3356qI0eXF/jfpMl3W9p/teB1y/u1alW1YeUACsI5vOLatGm3Ll++IkkacnvPfHtComzi2AaKj9AVZV6rVk3Uvn0LSdKSJau0Z8+RXG2+/HK5Tp7MHGvo/vuHytGRkTXKkvVbDik+IfMBXBPH9VOLbGPAZjewdysNvbW9JOn8xcvad7DgEPXOYZ3l5JT5b2ERD9AqdTi2Kw72NQCUXZzDK66flq+3TA8b1ttmdcA6OLaB4uOIQLnwyisPacyY55WUlKIJE6bp0UfvVKdOgUpKStHKlRv1/fd/SJLq1aupBx4YbttiUWSxVxL03ic/a9ozo1XZw1Vrlk7Tp/NXae3mA4qJjVcVP08NGdhWD9zTW/b2mb8lTXvne5nNBY/Pem1ogdTUNH2//C+rfw4UHcd2xcG+BsqXa+MAXhMdfcUyffbsRS1dmrPX1MiR/UusNhiPc3jFExsbp/Xrd0qSGjeuoxYtGtq4IlgDx3bFwDXbeghdUS40b95QH3zwgp577j3FxSXo/fcX5GpTr15NzZkzTZUqudmgQhTXO//5ST6elfT4hIHyqOSq5yYP1XOTh+Zql5KSphmzFuu7ZQWHqE0aVlf71plfDtdsOqCIyCsFtodtcGxXHOxroHz58cc/tWzZ2jzn7d59WLt3H87xHn/AlW2cwyue337bbHlA4rDhvW1bDKyGY7ti4JptPYSuKDf69u2oFSs+0oIFK7R+/U6Fh0fK0dFBdepU16BB3TVu3BC5uvLk47Lshde/0bfLtuhf9/RW1w5NVLumn9xcnRQXn6RTZ8O1edsRffHNOp04HXbDdY0Z2c0yvWgJQwuUZhzbFQf7GgDKLs7hFcuKnzZIkuzt7XTH7b1sXA2siWMbuHkm843uv0U5c8zWBcBqmuR45V73PhvVAWuLP7vwunc4rsuvJte9Zl+XXzn3tVmH82mH8sCk65/uzLFdfnEerzhy7usM8yEb1QFrszM1v+4djuvyi3N4xXL9/i4+HqQFAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAA5nMZrPZ1kUAAAAAAAAAQHlBT1cAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAzkYOsCULLMOmrrEmAlJgXkeJ1u3m+jSmBt9qZWOV43HPutjSqBtZ38ZkyO15eSVtioElibv8vQHK8zzIdsVAlKgp2peY7XXLPLr+uv2XwXL7+u/y6emrHHRpXA2hzt2uR4bdZhG1UCazOp2XXvHLNJHSgpTQxfIz1dAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCAHWxdQVixatKhEt+fp6akhQ4aU6DYBAAAAAAAAFB+hayGNGzdOJpOpxLYXEBBA6AoAAAAAAACUQYSuReDr66tJkyZZdRtms1lBQUFW3QYAAAAAAAAA6yF0LQI/Pz9Nnz7d6tshdAUAAAAAAADKLh6kBQAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAM52LoAFE9oaGih2tWqVcvKlQAAAAAAAACQCF2LJDIyUkFBQbYuI4fatWsXqp3ZbLZyJQAAAAAAAAAkQtciiYyM1IwZM2xdBgAAAAAAAIBSjNC1kObNm1ei2/P09CxUu3Pnzlm5EgAAAAAAAABFQehaSOPHj7d1CXlirFYAAAAAAACgdCF0LaRFixaV6PY8PT01ZMiQEt0mAAAAAAAAgOIjdC2kcePGyWQyldj2AgICCF0BAAAAAACAMojQtQh8fX01adIkq27DbDYrKCjIqtsAAAAAAAAAYD2ErkXg5+en6dOnW307hK4AAAAAAABA2WVn6wIAAAAAAAAAoDwhdAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIAdbFwAUV3DwcW3csEu7dh/SyRPndPlyrBwdHeRfxUdt2zbT6FED1K59c1uXiUKIiopV8P4TCg4+ruDgkzoQfFIxMVclScOH99Kbb0++4ToSE5O1edNe/fXXPh08cEohIWFKSEiSu7ur6tWrrm7dW+vuewbI39/b2h+nQqrk6qDet9RQYENfBdb3UTVvV/lUdpazk72uxqfq+PlYbdh3UT+sP6mYuJQ813HymzFF3m7Dsd/meq9jU3+1beKvWxr4qF71yvLxcFZld0clp6TrQlSCdh69pB/WndSBM9FF3h5uXtjFaP26bLv+2nRE4RejlRCfLC9vd1Wr4aO2HRqq78Bb1KBxNUv7i+cv687b3irSNqrV8NaPv71sdOmwggsXLmnJj6u1YcMuXbhwSfHxifLxqayaNauoY6eWGjSom5o0qWvrMnEdI67XJ0+G6u+twToQfFLHjofoclSsoqOvyt7eTr6+nmoZ2FBDbu+hvn3by2QyWfsjoRji4hK0YcNOBQcf14EDJxQRHqXLl68oOTlFHh7uatiotnr1bKdRowfI27uyrctFAa4d2weCT+rAgZM6EHzKcmwPG95TM996vNDrOn8+Qt9/u0p/bz2gc+fClZiYLDd3F9WvX0Pdu7fWXff0l6+vp7U+CgzQNGB4odp16NhCCxfOtG4xsKqoqBjt339M+/cf++faftxy7I8Y0Vdvv/2UjSssuwhdUaaNG/uidu48lOv91NQ0nT1zQWfPXNCypWs0bHgfvf76ZDk5OdqgShRWj24Ti7X80aNnNXbMq0pISMo1LzY2Tvv2Hde+fce14Ktf9H9Bj2jwbd2KtT3k1qqBr2Y/kff/r76e9vL1dFHn5lU1cUhTPfO/rdoUHFbsbZ66cCXP99+f1FXVfdxyve/kYK8ANycF1PbSmL6NtHDVMb2+cLfM5mKXghv4cdFmffaf35SYmDNwjwiPVUR4rPbvOa34+CRNfX5YsbZTp65/sZZHyfh64a/64IOvc52zw8KiFBYWpV27DisuLlEvv/ygjSpEfop7vZakzz5dql9+3pTnvNDQCIWGRuj337aqQ4fmmv2fZ+Xl7VHsbcI69u8/pmeefjfPeZcvx+ry9ljt2H5AX3yxTP+e9bR69GhbwhWisHp1f8SQ9az4aaOCZsxVUlLO6/2V2Hjt23tc+/Ye19cLf9Os96aoa7dWhmwTwM3r2vU+W5dQbhG6okyLiLgsSapSxUeDBnVTu/YtVKO6v9Iz0rV371HN+3K5wsOj9NPydUpLS9d77z1r44pRWNVr+KlB/ZrasmVfoZeJi0uw/PHetm2AevVupxYtG8rLy0PRl69o1apt+nHxasXFJer55/4j90pu6tmzjbU+QoV1ITJefx+K0IEzl3UxKkERMYmyM5lUzcdVgzrW0a0dasm3sos+e6anRk77U0dCYnIsP/iFlTfcxsge9fXQ7c0kSUs3nc6zTWJSmjbuu6jdJyJ1JuyqLsUkKi4hVX5errqloY/G9G0kfy9Xjb81QInJ6Zr1feH/raHo5s9Zrbn//UOSVLuuv+4Y1VHNWtRWpUouio1N0LEj57Vp7QHZXdejzb+Kpxb8+MwN17/wy7VatXKPJGnQ0PbGfwAY6pNPFus/sxdJkurVq6E77xygloGN5OHhrpiYqzp86JRWr96W698DSp+buV5LkoO9nVrd0lht2gSoSZM68vP3ko93ZcVeidfpU+f1w/erdPz4Oe3YcUiPP/a2vl70uuzsGBmttKpe3U8dOwWqRYtGql7dT/7+3srIMCs8LEp//LFFq1ZtVXT0FT3+2Bta/ON7atq0vq1Lxg1Ur+6n+g1q6K8t+4u03O7dR/Xqy58oI8MsOzuThg7vpb5928u/irfCLkbqp+UbtX7dLsXGxmnK5He1bMUs1a5d1UqfAkYYM2aQxtw7ON/5bq4uJVgNrK1GDX81aFBLmzfvsXUp5QKhK8q0+g1q6amn7tfAW7vI3t4+x7zWrZtq2NA+GjPmBZ05c16//rJR99wzSB06tLRRtbiRxx4frcDARmoZ2FB+fl46HxqhAf0nFXp5O5OdBg3uoscn3alGjWrnmt+t+y3q0bONpkyepfT0DM184wv1+OMjbls00N+HItRj6op856/cdk4D2tXUp0/3lLOjvaaMbKnHP9yco82x0NgbbqdD08yejBkZZi3fcibPNoNeWKn0jLy6r0Zr/d4L+uqPY1oaNFB1q3rowdua6vNfD+c75AGKZ+e245bAddAd7fTi9Dvl4JjznN2+U2PdO763UlPTcrzv4GifY7iBvKSnZ2jPjpOSJDd3Z/Xqy3m+NNu6db8lcB02rLdef2OSHB1zfiXt0qWVJjw4XCkpqbYoETdQ3Ou1JAW98ZgcHOzznNe1ayvdM2agnn7yA61atU179x7T+vW71LdvByPKh8E6dQrUuvVf5jt/8G3dtXr135o86U2lpqbpvx9/q48+ZgiY0ujRx0epZcsGWcf2+Qjd2n9KkdYxd85yZfzz/evlVx7QPfcOtMwLDGyoAQM7adY7C/XV/F+VlJSiBfN/1SuvTTD0c8BYPr6eDPVTzk2adI8CAxsrMLCx/Py8FRoarn79in9XC3iQFsq4zz6bpsG3dc8VuF7j7VNZL7yYdRH/44+/Sqo03IQnptyt3n3ayc/P66aWb9M2QO9/8HSeges1/fp10IABHSVJ50LCdfhQ3r0kcXMyCnGP/qpd53XynyEB2gcU/Tbw+tU91LqRnyRp2+EIXYxKyLNd3oFrlpi4FH2/LjOoc3Sws6wTxsrIyNC7byyVJDUKqK4XZ+QOXLO7PnwrjJ1/H1fkpcx/U737t5KzC0PJlFYZGRn6vxmfSpKaNq2nN2ZOLnCfMyxQ6VTc67WkfAPXa+zt7TXhwaGW17t2Hr7pbcG68vsenl3//p1Vv35NScpzaDCUDpOfuLPYx/bevcckSV5eHjkC1+wefXyUZXrf3uM3vS0AxpgyZaz69OkoPz+ee2I0QleUe506BVqmz4UUf/xIlH0dO2X1ggs5F27DSiqu+MTM3mvOBYRv+RnZPeuWxPyGFih0HUlZvSqdHbkkWsP2rccUGhIpSRr7QJ8bBi034/dfdlmmBw9tZ/j6YZwtW/bq7NmLkqSJE0da5d8Dyg83d1fLdHIyvZ7LOvd/9if7sny7dsdKzVr5/7Du4eEm73/Gab7+DhcAKE8YXqAIIiMjFRQUZOsyUETZb01kLDBIOf9N2PNvosTVr+6hZnUzf0XN7yFYBRnWvZ4kKT4pVb9vP3fTdZhM0m2d6lhe30wtuLF1f2aOBWcymdStZzPL+1diExQbEy9PL3dV9sz9wLPCSohP0qa1ByRJ1Wt4q3W7BsUrGFb1+++Zd5yYTCb17p019m5MzFXFxFyVl5eHvLx4YBIy/bZyi2W6QYOaNqwExXXqVKiOHMn8oZR9Wb7Vr1dDhw6d1vnQS/m2iYtLUHR05pPR69WvXlKlAUCJI3QtgsjISM2YMcPWZaCIduw4YJlu2LCWDStBabFjR9ZtbQ0a8sW/JLg42auat6v6tq2ph29vJkeHzLB73u9Hi7Sezs2rqKafuyTpzx2hSkguWu8IO5NJ/l4ual7PWxNva6pOzapIkjYHh+n4eUJXazi4P0SSVK2Gt9zcXfTnyj36+ou1OnUi686Daw/WGj2mu5ycivbVZN2qYCUlZf6Qcuvt7RijuZTbty/zttOaNavIvZKrfvl5o+bMWaLjx0Msba49WGvcfUMYXqACio6+orNnLurHH9do2dL1kiRvbw/dfkcP2xaGIktMTFZ4eJTWrduuL+YuVVpauiRp/PihN1gSZdldd/fXjOmfKybmqr7/bpXuvmdArjaffrI0W/vc81G6/PH7X/r9ty06fz5CdnZ28vf3Vus2TTViRF917hx44xUAFRihayHNmzevRLfn6elZotsrrzIyMvT5nCWW14MGd7dhNSgNjhw5o40bdkuSmjSpQxBvRaN61te/H+mc7/xPVhzSir/OFmmdI25yaIGT34zJd96B05f13Kd/F6kOFE5GRoZCzkRIkry83PXhOz/px0Wbc7U7d/aS/vf+r9q09oD+/dGD8qjsmqtNfn7/OWtogUF3MLRAaZaRkaHTp85LygzR3pw5VwsX/pqr3ZkzFzRr1ldavXqbPv3sVVWu7F7SpaKEjb9veo4fRLPz9vbQfz5+jn8HZcTSpWv08kuz853/0MOjdPsdvUqwIpS0EaP6aPfuo1rx00bNfP1LHTp4Wn36tpOfv5cuXojSzys2ae2aHZKkhx8ZoS5dCe1KuxMnct5ZdvbsRZ09e1E/LV+n/v076a23p8jDg3M0kBdC10IaP368rUvATZg//yft35/Zq2bAwC5q2bKRjSuCLaWkpGraq58qPT1DkjT1yfyDOFjPwTPReuWL7Qo+dblIy7k42evWjpkPSbsYFa+th4o3Hm9CUpreXLRHSzacUkpaRrHWhbzFxSVZnmB88sRFHT54Tr7+lTXpqSHq3KOpnJ0cdfjgOX3y4a86uD9EwXvP6q3pP+jNDwp3zQ27GK29u05JkgJb11WtOjwMrTS7ejVBGRmZx9qxYyEKDj4hf39vPff8ePXs2U7Ozo4KDj6h995doH37jmnPniN65ZWP9NFHL9q4ctjKuPsG67HHR8vbu7KtS0ExNWtWX0FBkxXYqrGtS4GV2dvb6c23H1fvPm31+WfLteTHtVry49ocbTp2aqGHHh5O4FrKubo6q0/fjurSpZUa1K8pN3cXXb58RTu2H9R33/2umJirWr16m2Iff1Nffvl/N/UwVKC846hAubV9+wG9/94CSZKvr6dmzHjMxhXB1t54/QsdOJD5tPrhw3upT9/2N1gCxfHnzlAFn1opSXJ2slfdKpV0W+c6urVDbc2e1FWvf71b6/ZcKPT6BrSvJQ/XzFuNl285K7O58LUMfiGzDjs7k/w8XdS5eVXd26+RXrq3tRpU99A73+5VWnoRVohCSUpMsUynJKfJxcVRH819RHXqVbG837pdA/3n80f1yP0f6cTRi9q49oAO7g9Ri1Z18lplDn/+ulvmf/4h3Ho7vVxLu8TEJMt0cnKKXF2d9dVXr6t+tvEdO3RooflfBWnMPS/qyJEzWr1qm/btO6Zbbmlii5JRQma+9bgSE5JlNpt15WqCDh44qe++/VOLvvldoeciFPTGo8V6mjpKTv/+ndSy5UeSpOSkFIWcu6jff9usVav+1jPPzNJLLz+kPn062LhKWNvJk+e14qdNOn4877H39+09pqVL1qlBw5qqWtWnhKtDYW3Y+IUqV66U6/1u3Vpr3H1D9PBDQTp06JR2bD+ob7/9Xffff7sNqgRKN54gg3Lp+PEQPTH5TaWlpcvZ2Ukfzn5Bvr5eti4LNjTns2X6cfEaSVJgYEO9Om2ijSsq/64mpOpYaKyOhcYq+NRl/fJ3iB7/cLOe+WSraleppM+e7qFRPevfeEX/GJl9aIGNp4pUy7U6joTEaHNwmN79fp+GvPiboq4ka8Lgppr7XC/ZMRao4a4fj/P2kZ1yBK7XOLs46uHJgy2v1/6xt1Dr/+OX3f9sx0H9bm1903WiZDg7O+V4PXp0/xyB6zUuLs6a+uRYy+vfVuYekgLlS61aVdW4SR01Cair9u2bafy/btfyFe+qZ8+2Wr9+l+6680WFhUXZukwUQuXKldSkSV01aVJXga0aa8iQnvro45f1zjtP6dy5cE16fKaWLl1j6zJhRbt2Hta4Ma9p/bpdqlLFW2+9M0nrN32qPfu/1up1/9Wrr02Qi4uzflv5l8bc9YpO5BPMwvbyClyv8fPz0uz/PG/p3frN17mHCwJA6IpyKPRcmB6cME2xsXGyt7fT++8/qw4dWtq6LNjQ99+t0ocfLJKU+cTcT+e8LDc3FxtXVXEt33xGv20Pkb2dnaaPbydPd6cbLuPv5aKuLatKkvadjNKpi1eLXcfFywmaMX+nJKlHYHXd1Zun3hvNzd05x+uOXfLvrdiuUyPZ//OAtcMHQ2+47kPBITp7OnO82G69mxdpHFjYhrt7zn3UtVvrfNt26dJKDg72kqQDB05YsyyUUs7OTpr51uNydXVW2MUovTdroa1LQjEMG95HgwZ1U0ZGht54/TPFxBT/Oo7SJyUlVc8/+5GuXk2Qn5+XFn33hu4Y2kN+fl5ydHRQtWq+uufegfpq4XQ5OzsqIiJaL7/0ia3Lxk2qXbuauna9RVLmOK/h4UUbOgyoCAhdUa6Eh0fpgQemKSLiskwmk2a+OUX9+uf/IB+Uf7/+slmvB30uSapRw19zv3yNseFKgVW7Mh+m4+7iqJ63VL9h+2Fd68nBPvOStawID9C6kU37w5SYnCZJGtSptmHrRSYnJwd5eWc9WKFKtfwfEuns7Cgvr8y2MdFxN1x3jgdoMbRAmeDk5Cgfn6zzb/Xq+Y/B6+zsJK9/ztWXL1+xem0onby9K6tNmwBJ0tq1O5WammbjilAcfft1kiQlJCRp06bdNq4G1rB50z5L8HbvuFvl5++VZ7tGjWvr9jt6SJIOHTylI0eK9mBVlB4NG2Z9f44I544E4HqErig3oi9f0YMTpuncuTBJ0quvPazhw/vauCrY0tq1O/TSix8rI8Msf39vfTl/mqpV87V1WZB0+UqyZbqm342fdjq8ez1JUnJqun7eatwX8wyzWbHxmeOO1vTlqavWUL9hNct0xg3Gzb32kDt7+4K/nqSlpmvNP0MQePtUUqduAcUrEiWmUaOssXqv7e/8ZKSnS5KlBzQqJu9/gvrExGTFRNM7sizL/qPLhQsRNqwE1nLq1HnLdPPmBQ8h1bxF1vzT2ZZD2cLoXEDB+BaLcuHq1Xg9OHG6TpzIHBPomWfGa+zYITauCra0dWuwnn7yA6WlpcvLy0Nzv3xNdepUu/GCKBHVfLJuM05ISi2wbbO6XmpW11uStGHvBcXEpRTYvigc7e3k7ZF5C3xCMj2orKF1u6w/qi6cz78HRHxckmJjEiRJ/lXy7xErSX9tOmxpO+C2Npbb0FH6tW/f3DIdei4833ZxcQmK/idgq1qFH8sqsohst6syNFDZFp5jXzIkTHmU/UfTtLT0Attmn891vOw6cTJrSKgqPBQNyIXQFWVeYmKyHnk4SIcOZj6V/tFH79JDD4+ycVWwpT27j2rypHeUkpIqDw83fT73FTVuzK3jpcngjln74+i52ALbjsj+AC0DhxaQpP7tasrZ0f6fOmIMXTcy9eofaJneuOZAvu02rj0gszmzJ2yrtgX3jsk+tMDgOxhaoCwZeGsXy/Tq1X/n2271qr8t/x7aZQtqUbGEhUVp795jkjKHCHKvRFBXlv3x+xbLdJMmdW1YCaylVq2sh2Xu3nWkwLY7dxyyTNesmfshmyj9Qs+F668teyVJdepUU9Wq/EgKXI/QFWVaSkqqJk9+U7t3H5Yk3X//HXryqXE2rgq2dPjwaT326FtKTEiWq5uzPvnsJbVo2dDWZVUYo3rWl5NjwZeWBwYFqE+bzCeWh0TEaceRS/m2tTOZNLRr5h9ml68ma93eC4Wqo2uLqqpbNf8nrkpSo5qVNe3+rMBu2aYzhVo3iqZRkxrq3L2pJGn173u1c9vxXG2iIq/o849/lyQ5OtpryLAO+a7vSmyCtm7KPOc3bFxNjZvWtELVsJaAgHrq0bOtJOnXXzdr69b9udpcuhSt2bMzH37o6OigkSMZKqi8OXP6gv7+O7jANlevxuu5Z2dbxnEdNrxnSZSGm7B06RolJxd8F8r8+T9pw4bMh1fWqlU1R693lB+dOreUq2vmHUTff7dax46F5Nlu08Y9WrN6hySpalUfNW1GCF/arF27vcDeypGRMZoy5R3LOXrMvYNLqjSgTHGwdQFAcTzzzLvasnmPJKlz51YaNXqAjh3Lf7xHR0cH1a/PH+il1a5dhxVyNszyOjrb2G0hIWFatnRdjvYjRvbJ8TokJEwPT5ypK1fiJUlTp46RRyU3Hc/nC58k+fh6yte34FuZUXhTRrbUS/e20R87zmnn0UsKiYhTfFKa3F0cFFDbS8O61VP7AH9JmeOzvjJ3uzLM+Y/z2bNVNfl7ZfZs+uWvs0q7wZig17QP8Ne8F3rrr4Ph2rT/oo6ExCgmLkX29ibV9HNXj8BqGt69nlycMi+DP6w/qa2H8r/VGcUz5bmhOrDvrOKuJur5J77UXWN7qEuPpnJ2dtShA+f09RdrFRGe2eN54qRb5V81/2Ny9e97lZqa+UfAoDval0j9MNZLL03Qvr1HdeVKvB57dKbuv/929ezVTi7OTtoffFyfz1misLDMoSimTL2XnjOlUHGv1xER0ZrwryAFNK2rfv06qkWLBvLz95K9vb0iI2O0Z/cRLVmyVpGXYiRJjRvX1sSHRljvA6FYPv74W73zzpcaOLCL2rVrrjq1q8nN3VXxcYk6duyMfv55g6WDhKOjg4JenyR7e24nL4127zqikJD8ju1wLV+2Pkf74SN653hdubK7Hpw4VB9/tFjx8YkaN2aa7h13q7p2baXKld0VFRWrtWt2asmPa5WRkfmd7smnx8jOjr5gpc0bb3yutNRPNfDWLmrdOkA1a1aRi4uToqOvavu2A/r++z8UHZ35oMt27Zpp7NjbbFwximPnzoMKCbloeX1t30rS2bMXtXTp6hztR47sX2K1lXUms7mAv3ZR7ph11NYlGKppwNAita9Rs4rWrp1rpWpsy6ScD5JJN+fuPVTavfzix1q+fEOh2x86sjjH62VL1+mVl/9XpG0+PulOTX7iriItY2v2plY5Xjcc+62NKsltw4d3qJZ/wT1MJeliVLxemLNdWw6EFdhu9uSuur1LZu+H4a/9oeBTlwtsf82UkS01dVTgDdulpWfoy9+OatZ3+woMf23l5Ddjcry+lLTCRpUU377dp/Xaswt0OSouz/kmk0n3T+yrhyYPKnA9D4/7SIeCQ2Rvb6elf74iX7/KBbYvK/xdcl7PMsyH8mlZPuzadUhPTp2lyMiYPOebTCY98uhoTZ16b8kWVkLsTDl7+ZW1a3Zxr9fbtx3Uv8bPKNSyvXq11cy3HpePT9n8gfT6a3Z5+y4uSX37TtSF8zd+MFa1an6a+eYT6tatTQlUVfKu/y6emrHHRpXcvFde+p9+Wr6x0O0PHP4u13tms1n/fnuBvl74uwqKGhwc7TX1yXv0wIQ7bqpWW3K0y/lv2KzDNqrEevr2fUgXzud/N9o1A2/tojfemKTKlW/8/b8sMqnZde8cs0kd1vbiix9o2bK1hW5/9OjPVqzGlpoYvkZ6ugIADPOvd9arT+saatfEX3WrVpKfp4u8KjkrKTVdl2OTdCgkWuv2XNCvf4coKaXgByxUcnVQv7aZPdOPn48tdOAqSV/+dlSnLlxRp+ZV1LSOt6p4uci3sovsTCbFxqfo1MUr2n4kQss2nVFIRN4hIIx1S9v6Wrj0Wf347RZtWndAF89HKzU1Tb5+ldWmfUONHtNNTZoVfCfCubOXdCg4s+d6+86Ny03gWhG1a9dcK36erW++Xqk1a7YpNDRCqalp8vf3VseOLTR23BA1b97A1mXCStq0DdDnc1/V1q37dfDASYWFXVZUVIySklLk7u6qWrWq6JZbGuu227urbdumti4XNzB37gxt2LBTu3cfVsjZi4qKilFMzFU5OzvJ19dTTZs1UO/eHTR4cHfLrecov0wmk154abxuH9pDSxav1Z7dR3XhQqSSkpLl5uai2nWqqUOHZrrzrn6qV7+GrctFPt5+e6p2bD+ovXuP6ty5MEXHXFV8XILc3FxUrZqf2rRpquEj+qhNG87RQEHo6VrBlMdf15GpPPR0ReGU5p6uMFZ56umKglW0nq4VXVnv6YrCqwg9XZGpPPR0ReFUhJ6uyFRRerriGuN7ujJ4CgAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxkMpvNZlsXAQAAAAAAAADlBT1dAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwkIOtC0BJO2brAmA1TXK8Sjfvt1EdsDZ7U6vr3uG4Lr9yHteNRi60UR2wthNL78vxOi1jn40qQUlwsLslx2uu2eXX9dfs+LSNNqoE1ubu0DPH65SMXTaqBNbmZNcux+t08wEbVQJrsze1zPE6w3zIRpWgJNiZmhu/TsPXCAAAAAAAAAAVGKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADORg6wLKikWLFpXo9jw9PTVkyJAS3SYAAAAAAACA4iN0LaRx48bJZDKV2PYCAgIIXQEAAAAAAIAyiNC1CHx9fTVp0iSrbsNsNisoKMiq2wAAAAAAAABgPYSuReDn56fp06dbfTuErgAAAAAAAEDZxYO0AAAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBADrYuAMUTGhpaqHa1atWyciUAAAAAAAAAJELXMq927dqFamc2m61cCQAAAAAAAACJ0LVIIiMjFRQUZOsyAAAAAAAAAJRihK5FEBkZqRkzZti6jBzOnTtn6xIAAAAAAAAAZEPoWkjz5s0r0e15enoWqh1jtQIAAAAAAAClC6FrIY0fP97WJQAAAAAAAAAoAwhdC2nRokUluj1PT08NGTKkRLcJAAAAAAAAoPgIXQtp3LhxMplMJba9gIAAQlcAAAAAAACgDCJ0LQJfX19NmjTJqtswm80KCgqy6jYAAAAAAAAAWA+haxH4+flp+vTpVt8OoSsAAAAAAABQdtnZugAAAAAAAAAAKE8IXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBAP0kKZFxUVo/37j2n//mMKDj6u4ODjiom5KkkaMaKv3n77KRtXiMKKiopV8P4T/+zHkzoQfNKyL4cP76U33558w3UkJiZr86a9+uuvfTp44JRCQsKUkJAkd3dX1atXXd26t9bd9wyQv7+3tT8ODHT+fIQWLvxZ69fvUFhYpJycHFW7djUNHtxDY8feJldXF1uXWOFUcnVUr7Y11aqxrwIb+qqqj6t8KrvI2cleVxNSdeJcjNbvPq/Fq08oJi6lwHX5eLro3oGN1bNNDTWo6Sl3V0clJqcpJOyq/tofpm9+P6rzl+ILVZeDvUlDe9bX4K51FVDHW35eLopLTNWl6ETtOx6pTXsu6LetIUb8X4DrZJ3DT+jAgZzn8GHDe+nNtybd9LoTE5M1fOgzCg2NkCTVqOGvVWv+a0jduDlcsyuGuLhEbdkYrIMHzujQwbOKCI9WTHSckpJS5FHZTQ0aVle3HoEaPqq7vLwqFbiuy1FX9OP3G/TXloM6c+qiEhKS5eLqpFq1/dWxUzPdNaa3atT0K6FPhrwcPHBKGzfs1Z7dR3Xy5HlFX74iB0d7VfH3Vuu2TTRyVG+1bde0wHVkZGTo9KkLmeeF/Sd14MApHTsaotTUNEnSl1+9qg4dm5fEx0EBMs/hx7Odw09kO4f31ptvP1Gk9W3cuFuLf1ilA8EndPnyFfn4VFbLwEa6864B6tmzrTU+AqzowoVLWvLjam3YsEsXLlxSfHyifHwqq2bNKurYqaUGDeqmJk3q2rrMMoHQFWVe16732boEGKRHt4nFWv7o0bMaO+ZVJSQk5ZoXGxunffuOa9++41rw1S/6v6BHNPi2bsXaHkrG2rXb9dxz7ykuLsHyXmJismJjT+jAgRNavPhPzZkzTXXr1rBhlRVPq8a+mv1Mjzzn+Xray9ezmjq1rKaHhrXQM7M3a9Pei3m27X5LdX34dA95eTjneN/RwUktG/qqZUNf3XdbgF779G8t33C6wJoC6nrp/Se7K6BuzoDGx9FePpVdFFDXW4O61CV0tZKe3R+y2ro//uh7S+CK0oFrdsVwMPi0Xnru8zznRV++ql2Xr2rXjmNaMO8PvfH2g+ravWWebbduOaiXnp2jK1cScrwfdzVRRw6F6MihEP3w7Tq9PH2cbh/axfDPgRsbPy5Iu3cdyfV+amqazp4N09mzYfpp2UYNHdZDM4IekqNT3lHCzys269WXPrV2uSimHt0mGLKejIwMTZ/2qZb8uCbH++HhlxUevl1rVm/X6Dv7a8b/PSI7O260Lgu+XvirPvjg61zX57CwKIWFRWnXrsOKi0vUyy8/aKMKyxZCV5QrNWr4q0GDWtq8eY+tS0ExVa/hpwb1a2rLln2FXiYuLsFycWjbNkC9erdTi5YN5eXloejLV7Rq1Tb9uHi14uIS9fxz/5F7JTf17NnGWh8BBjh06KSeeuodJSWlyM3NVY88MlqdOrVSUlKyVq7cpB9++ENnzpzXww8HacmS91WpkputS65QLlyK198HwnTg5GVdjIrXpehEmUwmVfd106AudTSwcx35eLros5f6aOQLv+nImegcy9euWkmfvNhbrs6ZX0dWbTun5RtO6UJkvKp6u6p/p9oa2buhXJ0d9M7krgoJj9PuI5fyrCWgrpe+Dhoobw9nJSWn6Yc1J7R570WFX06Qo4Od6lX3UI82NdWhWRWr//8CqXp1P9VvUFN/FeEcnp/Dh05r4YKVcnZ2lIODg+LjEw2oEEbiml2+Vavmo/YdA9SsRV1VreYtP39PmTPMCg+P1po/d2nt6j2KiY7TU5P/q4XfvawmTWvnWD703CU9M+V/SkrKvOuhd9/WGnJHZ1Wr7qNLl2K1bs0e/fLTViUlpWjGK/NUq5a/WrdtZIuPWqFdupR5ja5SxVsDb+2ktu2bqnp1X6WnZ2jf3uP6av5KRYRf1oqfNik1LV3/fjfv3uxms9ky7eBor8aNaystLV3Hj50rkc+BoruZc/g1H36wyBK4NmteXw8+OFy161TTuZAwffHFch0+dFo/Ll4tb+/KeurpsUaXDoN98sli/Wf2IklSvXo1dOedA9QysJE8PNwVE3NVhw+d0urV22RnMtm40rKD0BVl3qRJ9ygwsLECAxvLz89boaHh6teveL0vYBuPPT5agYGN1DKwofz8vHQ+NEID+hf+dlQ7k50GDe6ixyfdqUaNauea3637LerRs42mTJ6l9PQMzXzjC/X44yOZuGiUWjNnfq6kpBQ5ONjryy+D1KZN1i1tXbrcorp1a2jWrHk6c+a85s1brieeuNeG1VYsfx8IV89HluY5b4+klX+dVf+OtfXpi73l5GivJ+5qpUn/3pCj3YQ7mlkC1znLDurfC3db5gVLWr0jVAdPXdb0iR1lb2+nR0e21MNvrsu1PSdHO330bE95ezjr/KU43T9jtc5evJqjzd5jkVq+4bQcHehlYS2PPT5aLVs2zDqHn4/QwP43vsW8IOnpGZo+7TOlp2foscdHa+mSdYSupQTX7IqhfcemWrnmnXznDxzUQevW7NEzU/6n1NQ0ffbJz3pv9uM52nz91SpL4Hr/A7fqyWdH55jfu29rNWteR/9+8ztlZJj15dyV+s//phj/YVCg+vVraMqTd2vAwMxrbna3tG6sO4Z11/33/p/OnLmo3379S3fd3U/tOzTLtZ6GDWvqxVfGq2XLBmrarK6cnZ30v49/JHQtZR57/M5/zuGNsp3DHyvSOs6cvqD581ZIklq2bKgFX78uF5fMO5cCAxupT98OGn/fazpw4KTmffmTRo7qq7p1qxv+WWCMrVv3WwLXYcN66/U3JsnRMWdk2KVLK014cLhSUlJtUWKZxF8eKPOmTBmrPn06ys+P8b7Kuiem3K3efdrJz8/rppZv0zZA73/wdJ5/vF3Tr18HDRjQUZJ0LiRchw8VfLsybGf//mPaufOgJGnUqAE5AtdrJkwYroYNM/f3ggUrLOOFwfoyMsw3bLN6+zmdDI2VpDx7mLZt6m9Z1/9+DM5zHQtXHlX01WRJUpsA/zzbTBzWQg1qeio9PUNT3t2UK3DNLjUt44Z14+ZMfuKuYp3D87Jw4UodPHhK9evX0IMThxu2XhQf1+yK4frwLS99+rVRvfrVJEl7dh3PNX//3pOSJJPJpImPDslzHXff21eenu6SpOC9p262XBTDfz99ToMGd853n3t7V9azz2f1VFz15/Y82wW2aqSx427VLa0by9nZySq1oviemHKPevdpX6xr9oIFvygtLV2S9MqrEy2B6zWurs565dXMzlBpaela8NUvN70tWFdGRob+b0bmsCBNm9bTGzMn5wpcs3Nyciyp0so8QlcAFU7HTlnjjYWcC7dhJSjI6tV/W6ZHjeqfZxs7OzsNH95HknTlSry2bdtfIrWh8OKTMn8Jd3KyzzXP0SHzvZiryYpLzP8X83PhV/9pn/tri52dSffe2liS9Nf+MO07HlnsmlE6XDh/SR9/9L0kadqMh+SUz/iBKN+4ZpcNbm6ZYUtKcu5z+bUfRD293FWpkmuey5tMJtWs5ZejPUqfDp2yHoB1LoTjsSIzm81au2aHJKlBg5q6pXWTPNvd0rqJ6tfPfO7C2jXbcww/gdJjy5a9Ons28/kLEyeOlIND7u/tuDmErgAqnOy3Q9gzoHuptWvXIUmSm5uLWrTIf2y3Dh0CLdO7dx+2el0ovPo1KqtZPR9J0qnzsbnmX3vPy8NZlVzz/8W8dlUPSdLp81dyzWsb4K9qvpm9o9bsyLp10cnRTnWqVlJVH1fZ2XE7cln0etBcJSYka+jQnurYsYWty4GNcM0u/c6cDtOxo6GSZOnxml3depnvxcbEKy4u/+FBzodm/mhWN491oHRITckKxAvTCxrlV2houCIiLkuS2nco+Bp9bX54+GWdP89DMUuj33//S1LmD2C9e7e3vB8Tc1VnzlxQTEz+d5GhYHQZKILIyEgFBQXZugwAxbRjxyHLdIOGNW1YCQpy8mRmgFanTvUCf21t0KBWrmVgOy5O9qrq66Z+7WvpoeEtLL1T5/+S+4nI3/55XIO61JWdnUmPjWqpWV/nfgjiuEFN5O3h/E/7Y7nmt27iZ5k+GhKjutU99Ny4NurbvpacHDP/3VyJT9GaHef00ff7FRIeZ8jnhHWt/HWLNm7co8qe7nruhfttXQ5siGt26ZSYmKxLETHauG6fvvryD8stxvfen/vOlNF399La1btlNpv15ZyVmvL0qFxtvl+0TrGx8Znt7+pl3eJx03buyPpxu34DjseK7OSJUMt0gxv8W8g+/+TJUNWqVdVqdeHm7NuX+R27Zs0qcq/kql9+3qg5c5bo+PEQS5trD9Yad98QhhcoAkLXIoiMjNSMGTNsXQaAYjhy5Iw2bsh8WE+TJnXUsGGtGywBW0hOTlF0dGavxmrVfAts6+lZSW5uLkpISFJYGLeW28LIPg307ye65Tv/0yUHtGJj7rEYt+y7qP8uDtakOwP1yMiWqlvdQys2ntaFyHhV8XbTgI61NbJPA0nSkrUn9ePak7nW0ai2p2W6QU1PzX2lr9yv6zVb2d1JI3o31ICOtfX4vzfor/1hN/tRUQJiY+P09tvzJUlPPT1WPj6VbVsQbIZrdumyYtkWzXh1fr7zH5g4WIOHdMr1fueuzfXgw7fpizkrNf+L3xVyNkKDb++k6tV9dOlSrNav3aOfl2f2srpjWBcNHZH/9QS2k5GRoS/mrrC8vnVw7n2NiiMsPMoyXbVqwd/Vq1XL+oE87GJUAS1hCxkZGTp96rwkydvbQ2/OnKuFC3/N1e7MmQuaNesrrV69TZ9+9qoqV3Yv6VLLJELXQpo3b16Jbs/T0/PGjQAUSUpKqqa9+qnS0zMfpDP1yTE2rgj5yf50cje3vMd/y87VNTN0TUhIsmZZKKJDpy7rlU//VvCJ/L9gf/DtXm07GKbHRgVqUJe6GtSlbo75B09F6X8/HtAff4fkubxXpayHNrw2ob1cnB305YpD+ub3Y7oQGa9qvm4aM7CJJg5rrkpuTvro2Z66/elfdDEywZgPCcO9N+trRUXGqnXrJrrzzn62Lgc2wjW77AhoWluvzrhPLQLr59tm0tQRat8xQF/MWam1q3dr7erdOeY3bVZHDz58m/oNbGftcnGTFn71m4L3Z/742X9AB7Vo0cDGFcGWcnxXd3cpsK2rW9Z3Nb6rlz5XryYoIyPzWnvsWIiCg0/I399bzz0/Xj17tpOzs6OCg0/ovXcXaN++Y9qz54heeeUjffTRizauvGwgdC2k8ePH27oEAMX0xutf6MCBzC+Lw4f3Up++7W+wBGwlOTnFMl3QkzOvufaAnaSklBu0hDWs2nZOg0/+LClzeIE6VT10W7e6urVzHX34VHe98eVOrdt1Ps9lq3i7alTfRmqTbZiA7ALqemtUn4Y6GRqrE6G5x4V1dc769+Hi7KAPvt2r/y4Otrx3LjxO/164W1fiU/TsuDbyrOSsR0e21PQ5eT91Gba1c8chLV26Tg4O9po24yGZTIzHW1FxzS59+vRro+Yt60mSkpNSFHrukv78Y6fWrd6jl577XM++eLd69r4lz2UvRcRoxbItCt53Ks/5x4+FasXyv1S/QXU1aFTDWh8BN2nH9sP68P3vJEk+vpX16vQJNq4Itpb9oXk3+q6e/Vb07N/xUTokJmYF4cnJKXJ1ddZXX72eYwiRDh1aaP5XQRpzz4s6cuSMVq/apn37jumWW/J+gBqyMPo1gAphzmfL9OPiNZKkwMCGenXaRBtXhII4OztZpgvzFOOUfx7s4OLidIOWsIarCak6HhKj4yExCj4RpV+3nNGkf2/Qs7M3q3ZVD336Ym/LMAHZNaxZWUv/PVjDetZXQnKapn22Td0fWqKmd36tTg8s1rOzNyv8coL6dqilxW8NUsfmVXKtIzk13TJ9OTZJc5YdzLPGz5cfVER0Zu/W27rVM+aDw1ApKamaMX2OzGazxt03WAEBdW+8EMolrtmlk0dlNzVqXFONGtdUi8D6uvW2jnpv9uMKemuCzodG6ukn/qsVy7bkWu7UyYu6756Z+u3X7XJ1ddZLr43Vb2ve0ba9n2jVhvcU9NYE+Vfx0qYN+/WvsW9r146jNvh0yM+J46F6csr7SktLl7Ozo977YKp8fbkrs6Jzcs4KUm/0XT37AxGzf8dH6XD9Phk9un+eYza7uDhr6pNjLa9/W7nZ6rWVB4SuAMq9779bpQ8/WCQpcyD3T+e8LDe3gm+DgW25u2cNKZCQkP+Tjq+59gst+7V0Wb7htH7belb29naaPrGjPCvl/FI3a2o3VfN1V0JSmsa88ocW/XFMYVEJSks3Kyo2Scs3nNboF3/XpehEebg76f2nesjJIedXl/jErC/y2w6GKzUtI89a0jPM2vrPWK7eHs6qU7WSwZ8WxfXZp0t1+vQFVavuq0mT77J1ObARrtllz+1Du6j/re2UkWHWOzO/VWxMfI750176QhHhMXJxddLcBc/rznt6q2o1Hzk6OsjXr7JuH9pFX337knx9KysuLlEvPz83R0gD2wkNjdAjE9/Sldh42dvb6d/vPaH2HZrZuiyUAjm+q8cXPGRAYkKyZZrzeemTfV9KUtdurfNt26VLK8sDjg8cOGHNssoNQlcA5dqvv2zW60GfS5Jq1PDX3C9fk7c3D2Up7ZydneTl5SFJCgsreMD92Ng4y/hQ2QfqR+mwevs5SZK7q6N6tsm6ZbRpPW+1apS5v1ZsPK2T56/kufyl6EQtWHlEklTN1y3HOiTlGJv1YmTOP/Svl72tjydf+kubL+b+JEnq0iVQ69ft0spft+T679oPLImJSZb3/v77gC3LhoG4Zpddvfu0liQlJibrr81Zx+SxI+d06OBZSdLgIZ3UoGH1PJf39/fS3WP7SsociuCvzXnftYCSExERrYcmvKmIiGiZTCYFvfGw+vZjmA9kqpbt4Vnh4QV/V8/+oNtq1Qt+6BZKnpOTY46Hllavnv/fU87OTvL657p8+XLe392RE2O6Aii31q7doZde/FgZGWb5+3vry/nTVK0aF/qyolGjOtq586BCQi4qLS3d8qvq9U6dCrVMN2xYu6TKQyFdvpLVu6Gmf1bv0oY1s25NPHiq4C/rB09dtkw3qOUp7cja58fPxVim7ewKHv8z+/y09Lx7xMJ2rt2euGzpei1bur7AttHRV/Xcs7MlSR06NFfnzi2tXR6sjGt22ebt42GZvpjt6eSnT120TDdrXqfAdTRrnjWkyJlTF6W+rY0rEEUSHX1FD094U6HnIiRJL70yXkOH97RxVShNGjaqZZk+dSrvcfvzmt+wYa0CWsJWGjWqo+3bM38wS7/Bd+SM9Myhvewd6MNZGPy/BKBc2ro1WE8/+YHS0tLl5eWhuV++pjp1qtm6LBRBu3bNJWU+5fTgwfxvX9mxI+uhSW3bcstbaVPVJ+uWpfikrNtF0zOyvtA52Bf8dST7/Ou/CO44FGGZrlPVQwWpUy0r9A2/fONhKwCUDK7ZZV9EeLRl2i3bk8rt7bN+ME3LZ/iXrPlZY3Tb5/NDK6zv6tUEPTLxbZ08mRmUPfn0PRozdqCNq0JpU6tWVVWp4iNJ2rmj4J7pu3YekiRVreqjmjVzj88P22vfvrllOvRceL7t4uISFB19VZJUtQo/jBYGoSuAcmfP7qOaPOkdpaSkysPDTZ/PfUWNG9MDsqzp37+zZXrJktV5tsnIyNDy5eskSZUru6tTp1YlUhsKb3DXrJ5Lx87GWKbPhcdZptvn8YCs7Dq2yJqffTlJCo2Is/SU7dSyqiq5OSov7i4O6tYq87bWsxev6FI0oWtpc/DwDzf8r0YNf0mZt55fe2/+ghk2rRvFwzW7fFj95y7LdKPGWT3ZatTKuk11z+7jBa5j985jWcvVZLggW0hMTNakR/+tw4fOSJIeemS4HnxoqG2LQqlkMpnUt18HSZk9WfftPZZnu317j1l6uvbt11EmU8F3JcE2Bt7axTK9evXf+bZbvepvmc1mSVK7bEEt8kfoCqBcOXz4tB579C0lJiTL1c1Zn3z2klq0bGjrsnATWrVqovbtW0iSlixZpT17juRq8+WXy3XyZOaYofffP1SOjoyaU1JG9mkgJ8eCv0Y8cHsz9WmX+cd3SNhV7Tic1Sv10OnLCovKHIP11s511CUw715tLRr4aMzAJpKkhKQ0bQ0Oy9Xms6WZPSzcXR316oS8x5t7+YH28nDPfJDXoj8L/sMfQMngml36rVi2RcnJBT/U6uuvVmnzxsy7TmrW8lObdo0t85o2q60qVb0kSWtX7da2vw/nuY7Dh87qx+83SJJcXJ3UsVNTA6pHUaSmpOnJJ97Xnt2Z4dm4+wZpypM81BD5u//+22X/z91IM9+Yq6Sk5Bzzk5KSNfONuZIkBwd73Xf/kBKvEYUTEFBPPXq2lST9+utmbd26P1ebS5eiNXt25oMuHR0dNHJk3xKtsazir1OUedfGfLwmOjprQOezZy9q6dKcPeRGjuxfYrWhaHbtOqyQs1mByrVbFyQpJCRMy5auy9F+xMg+OV6HhITp4YkzdeVKZpAzdeoYeVRy0/FjIflu08fXU76+nvnOh2298spDGjPmeSUlpWjChGl69NE71alToJKSUrRy5UZ9//0fkqR69WrqgQeG27bYCmbK3bfopX+11x9bQ7TzSIRCwq4qISlN7i4OCqjrraE966t9s8weqimp6Xr107+VkWG2LG82S+9+vUfvTu0uB3s7ffFqX3236rjW7ghVVGySPCs5q0fr6rrvtqZyc8n8uvLp0gO6mpD7j/+Vf53ViF2h6tOulkb3baQq3q5a9PsxXYiMV3U/d90zsLEl/D14KkoLV+YO8FF8u3YdUUhI1jk8Jtv1OCQkTMuWrc/RfsSI3iVTGKyCa3bF8Nn/ftYHsxar74C2atO2kWrVriI3N2fFxyfpxPHz+u2Xbdq7J3MIIEdHB7064z5LCCNJdnZ2mvzkSE176Uulp2foiUdma9RdPdWz9y3y8fFQbGy8/v7rkL5btFZJiSmSpAkTB8ujsptNPm9F9vyzH+mvLZnheafOLTRidG8dP3Yu3/aOjg6qVz/vB6MtX7Yhx+sjR85apjdv2qfz5y9ZXtepU1Vt2xGyl7TMc3j2v6GvP4evzdF+RB4BW736NfTAhGGa+/kyHThwUmPvfUUTJ45Q7dpVde5cuObOXabDh05Lkh6YMEz16tXItQ6UHi+9NEH79h7VlSvxeuzRmbr//tvVs1c7uTg7aX/wcX0+Z4nlAcdTpt6rqlUZXqAwTOZrfYNRQeTd7b8se/HFD7Rs2dobN/zH0aM/W7EaW2qS41W6OfevU6Xdyy9+rOXLN9y44T8OHVmc4/Wypev0ysv/K9I2H590pyY/UbZ+xbc3XX8Lffk7rrNbu3a7nnvuPcXFJeQ5v169mpozZ5rq1i2PX+RyHteNRi60UR25rf90hGpVqXTDdhcj4/Xif7dqy76Lec5/cFhzPXNvazk55j9+X0aGWfN/Oaw35+/Kt42bi4P++1wv9WiT/7+Dfccj9chb6xQZk3TDukvaiaX35XidlrHPRpXcvJdf+q9+KsI5/ODhH4q8jQH9JunChUuqUcNfq9b8t8jLlxYOdrfkeM01u3DKwzU7Pm2jjSq5OUMGvKiLFwp+2KEkVa3mremv/0udu+Z9u+mCeX/o4w+X5Ri39Xomk0n33tdPTz9/V5m8BdndIeeDplIy8r9mlUaBze4tUvsaNfz0x5r/FHtdQ4f31My3Hi3Stm3Nya5djtfp5gM2quTmvfziR1q+fH2h2x86siTP9zMyMjTttU+0dEn+f4+PGt1P/xf0qOzsyt6N1vamnA/qzDAfslElJWPXrkN6cuosRUbG5DnfZDLpkUdHa+rUop0vygo7k/FDJtDTFQBQqvXt21ErVnykBQtWaP36nQoPj5Sjo4Pq1KmuQYO6a9y4IXJ1dbF1mRXOA0Fr1KddTbVt6q+61T3k5+kqLw9nJaekKSo2SYfPRGvtzlCt3HJWSSn5/5H9xU+HtHZHqO4Z2Fgdm1dV3eoecnNxUFJyms5fitfOwxH6YfUJHTx1ucB6EpLS9MDrazSkWz2N7NNAzep7y6uSs64mpOrw6cv6efMZLVt/KkdvWwBAwf4750lt3rBfe/ec1LmQCF2OuqLY2Hg5OzvK28dDAU1rq0evVhowqL1cXZ3zXc/9D9yqnr1v0dLFG7Vr5zGdC4lQYkKyXFycVL2Gr1q3baTho3qoeYu6+a4DQOljZ2enN2ZO0oCBnbX4h1U6EHxS0dFX5O1dWS0DG+quuweq5z+3raP0a9euuVb8PFvffL1Sa9ZsU2hohFJT0+Tv762OHVto7Lghat68ga3LLFPo6VrhlO8ecRVb2e/pisKpaD1dK7bS29MVxioPPV1ReOWhpysKp6z3dEXhlfWerii88tDTFYVT0Xq6VnTW6Ola9vp3AwAAAAAAAEApRugKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAzkYvcKNGzcavcpC6dmzp022CwAAAAAAAADZGR669u7dWyaTyejVFshkMiktLa1EtwkAAAAAAAAAeTE8dL3GbDZba9UWJpOpRLYDAAAAAAAAAIVllTFdSyoIJXAFAAAAAAAAUNoY3tN13bp1Rq8SAAAAAAAAAMoMw0PXXr16Gb1KAAAAAAAAACgzrDK8AAAAAAAAAABUVISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYyPAHad2MK1eu6JtvvtG6deu0d+9eRUVFKTY2VpKUlpaWq31UVJTOnz8vSXJyclLTpk1LtF4AAAAAAAAAyI9NQ1ez2ayZM2fq3Xff1dWrVy3vXWMymfJc7sKFC2rdurVMJpPs7Ox06tQp1a5du0RqBgAAAAAAAICC2Gx4gcTERA0cOFDTp0/XlStXZDabLYFrfmHrNYGBgRo4cKDMZrMyMjK0cOHCkigZAAAAAAAAAG7IZqHr2LFjtWbNGstrd3d3DR06VM8880yhlh8/frxl+pdffjG8PgAAAAAAAAC4GTYJXRcvXqzly5dberTefffdOn36tJYvX65Zs2bJzu7GZd1xxx1ydHSU2WzWzp07FR8fb+2yAQAAAAAAAOCGTObsg6iWkFtuuUXBwcEymUwaNWqUfvjhhxzzHR0dlZ6eLpPJpPT09HzX07ZtW+3du1cmk0lbt25Vx44drV06AAAAAAAAABSoxHu6hoSEKDg4WJLk4uKijz/++KbX1apVK8v0sWPHil0bAAAAAAAAABRXiYeuW7dulZT5sKzevXurSpUqN70uf39/y3RUVFSxawMAAAAAAACA4irx0DUiIsIy3bJly2Ktq1KlSpZpxnQFAAAAAAAAUBo4lPQGs4ejbm5uxVrX1atXLdPu7u7FWlfFwTAM5VeTHK/MOmyjOmBtJjXL8dqsozaqBNZmUkCO1xzX5df1x3XjAV/YqBKUhOOrHszxmmO7/OKaXXFcf82OTfndRpXA2jydBuV4nZKxy0aVwNqc7NrleM05vHy7/jxuhBLv6ern52eZvnz5crHWdebMGcu0r69vsdYFAAAAAAAAAEYo8dC1Ro0alum9e/fe9HoyMjK0ceNGy+smTZoU0BoAAAAAAAAASkaJh67dunWTvb29zGaz/v77b128ePGm1vPDDz8oMjJSUubYru3btzeyTAAAAAAAAAC4KSUeunp6eqp79+6SpLS0NL366qtFXkdERISeffZZSZLJZNLtt98uO7sS/ygAAAAAAAAAkItNksrsQev8+fP11ltvFXrZ48ePq2/fvrpw4YLlvRdeeMHQ+gAAAAAAAADgZtkkdO3Xr59GjRols9ksKTOE7dWrl5YuXapLly7laJuamqoLFy7o559/1oMPPqjAwEAdPpz5hFeTyaRHHnlErVq1KvHPAAAAAAAAAAB5cbDVhhcsWKCzZ89q586dMplM2rx5szZv3pyjjdlslouLS673TCaTJKlz586aPXt2idUMAAAAAAAAADdis4FQXV1dtW7dOt19990ym82WXq/X/tdkMslkMlnmXXv/WptRo0Zp1apVcnR0tEn9AAAAAAAAAJAXmz59yt3dXd9++62WLVumLl265Aherw9ar73fokULff/991q8eLHc3NxsUTYAAAAAAAAA5MtmwwtkN2zYMA0bNkwnTpzQhg0btHv3bkVGRiomJkZubm7y8/NT8+bN1a9fP8ZvBQAAAAAAAFCqlYrQ9ZpGjRqpUaNGevDBB21dCgAAAAAAAADcFJsOLwAAAAAAAAAA5Q2hKwAAAAAAAAAYqFSHromJibYuAQAAAAAAAACKpNSM6bp161YtXbpU27Zt06FDhxQbG6uMjAzZ2dnJ09NTzZs3V6dOnTRy5Eh16dLF1uUCAAAAAAAAQJ5sHrpu2LBBU6dOVXBwsOU9s9lsmU5PT9fly5e1ZcsWbdmyRe+//75atWqlDz/8UL169bJFyQAAAAAAAACQL5sOL/Dss8+qb9++Cg4OzhG0FsRsNmvfvn3q27evnnvuOStXCAAAAAAAAABFY7OerpMmTdKnn34qs9ksk8kkKTNQrVSpkgIDA1W1alW5u7srPj5e4eHhCg4OVlxcnCTJZDLJbDbr/fffV0JCgv773//a6mMAAAAAAAAAQA42CV2XL1+uTz75RCaTyRKg3n777Zo6dar69u1rCWGzM5vNWrt2rWbPnq1ffvnFstynn36qgQMHatiwYTb4JAAAAAAAAACQk01C1xdffFFSZpD6/+zdd3gU5d7G8XtTSSAJIaH3FjrSQ1cQEMVCO0cRFMEuShF7AQyiKIpyQM8BCyiKIoKICiK9Spfee0IJJCSQXvf9I28WAklIyOxONvl+rovrzO4+88wvZ5zZ2XuffcbDw0Nff/21Hn744VzXsVgsuvPOO3XnnXfqxx9/1GOPPaaUlBRZrVa99tprdg9d58yZY9f+r+fn56devXo5dJsAAAAAAAAACs7hoeuuXbt0+PBh22jWTz/99KaB6/UeeughXb58Wc8++6wk6fDhw9q1a5duu+02w+vNNGjQoGxH4NpLvXr1CF0BAAAAAAAAJ+Tw0HXnzp225erVq+uZZ565pX6efvppffDBBzp58qQk6Z9//rFr6CpJAQEBGjZsmF23YbVaFRISYtdtAAAAAAAAALAfh4eu58+fty336NGjQH316NFDM2bMkCRduHChQH3lRWBgoMaOHWv37RC6AgAAAAAAAM7LxdEb9PPzsy2XL1++QH1du76vr2+B+gIAAAAAAAAAIzg8dK1SpYpt+dKlSwXq69r1r+0XAAAAAAAAAMzi8NC1c+fO8vLykiStXr26QH1lru/p6anOnTsXsDIAAAAAAAAAKDiHh66+vr7q37+/rFar9u/fr4ULF95SPwsXLtS+fftksVjUr18/phcAAAAAAAAAUCg4PHSVpMmTJ6tKlSqyWq0aOnSo/v7773ytv3nzZj3++OOSpMqVK+vTTz+1Q5UAAAAAAAAAkH+mhK4BAQFavHixateurejoaN1xxx166aWXdOrUqVzXO3XqlF566SXdfvvtioqKUp06dbR48WIFBAQ4qHIAAAAAAAAAyJ2b0R2GhITkue3999+vzz//XElJSfrkk0/0ySefqFGjRrrttttUvnx5lSxZUnFxcbpw4YJ27typ/fv3y2q1ymq1qkSJErr//vu1YMECLViwQGPGjDH6TwEAAAAAAACAfDM8dB03bpwsFku+1rFYLLJarZKkvXv3at++fTe0yXw9s31mUJuJ0BUAAAAAAABAYWB46HqrbhbU5vS61WrNd8gLAAAAAAAAAPZil9D12lGpsK+wsLA8tatSpYqdKwEAAAAAAAAg2SF0TU9PN7pL5KJq1ap5akcQDgAAAAAAADhGoZlewBlERETk60ZhAAAAAAAAAIofQtd8iIiI0Lhx48wuI4vQ0FCzSwAAAAAAAABwDULXPJo5c6ZDt+fn55endszVCgAAAAAAABQuhK55NHjwYLNLAAAAAAAAAOAECF3zaM6cOQ7dnp+fn3r16uXQbQIAAAAAAAAoOELXPBo0aJAsFovDtlevXj1CVwAAAAAAAMAJFYrQddmyZfr999+1efNmhYWFKSoqSomJiXle32KxKDU11Y4VZggICNCwYcPsug2r1aqQkBC7bgMAAAAAAACA/Zgaum7btk1DhgzR/v37bc9ZrVYTK8pdYGCgxo4da/ftELoCAAAAAAAAzsu00PXXX3/Vgw8+qJSUlCxB67U/4c/p+etfAwAAAAAAAIDCwpTQ9cSJE3rkkUeUnJwsi8UiV1dX9ezZU02aNNEHH3wgq9Uqi8WisWPHKjY2VuHh4dq2bZsOHjwoKSOALVWqlJ599ll5e3ub8ScAAAAAAAAAQLZMCV3ff/99xcbGSpJ8fX21ZMkStW3bVpI0adIkpaWlSdINP+Xfu3evxo8fr3nz5ikuLk6///67/vzzT1WtWtWxfwAAAAAAAAAA5MDF0RtMSUnR999/L4vFIovFoqlTp9oC15tp3Lix5s6dqxkzZkiSDh48qJ49eyouLs6eJQMAAAAAAABAnjl8pOu2bduUkJAgSSpXrpwGDhyY7z6eeOIJhYaGavz48Tp48KDef/99vfvuu0aXCicRGRmt3bsPa/fuw9qz54j27Dmi6OgYSVKfPl01ceIokyuEI3w06Rt9+eUvtsfffDtewcFNTKwIBREbG681a7Zpz54j2rv3qC6ER+rSpStKSkqWj09J1a5TVbd3bql+/bvL39/X7HJhJxzXzuHlJ1rrqQeb2h4PHP2Htuw+n+s6nVtX0YP31FPTemVVxq+ELl1O1O5DFzV38SGt3RqW67ofvNxJfXsE5am2OwbN1Znw2Dy1hbHq1+udp3at2zTS7NkT7FsM7G7PniNau2a7tu/Yr2NHQ3Xp0mW5u7upbLkyatGigfr3666WrRqaXSZuok2TEXlq16JVHf1v5gs3PJ+YkKy/NxzQ5r8P6cC+0wo7HaH4hCSVLFlC1aqXU9sO9dX33x0UGMi1m9n27T2utWt26p8dh3Ts2BlFXboiN3dXlSvrr2YtgtS33x1q0bJ+rn2kp6frxPGz2rPnmPbuPqa9e4/r8KHTSklJlSR9/c1bat2G476w43OXfTk8dL12XtZOnTrdcIOsa6WlpcnV1TXb19544w1NmzZNUVFRmjlzpsaPH59rXyi62rd/xOwSYLIDB45r1qxFZpcBA+3efVijX/wo29cuXbqsS1sua+uWvfrqq1/04aQX1alTCwdXCHvjuHYODWqX0ZB+jfPc3mKR3h3VUf++u16W5yuULakKZUuqR8camrv4kN7+dL24ZyrgHAYNfE3btu2/4fmUlFSdOnlWp06e1S8LVuiB3l00fvzz8vBwN6FK2NuRQ2f05KNTFB+fdMNrVy7Ha+/uk9q7+6R+mL1ab4x9UN17cu1mlsGDQrRj+8Ebnk9JSdWpU+d16tR5/frLWt3/QCeNC3lS7h7Zx0a/LVqvt17/n73LhZ3xucu+HB66RkVF2ZZr1659w+uurq62OV2TkpJyvFGWp6enevbsqR9++EHnz5/Xxo0b1aFDB/sUDadRqVJZ1apVRevX/2N2KXCQ9PR0jXn7v0pNTVNAgJ8iIy+bXRIMUrFioNoEN1GjRnVUsWKgypb1V3q6VeHnI7V06QYtW/a3oqKu6Lln39W8nz9W/fo1zS4ZBuG4dg4WizR+ZEe5u7koIipBgf5eN13nxSGtbIHrviMR+uKnPTp99oqqVfLVk/9uokZ1A/XgPfV06XKCJn+9Pde+zkfEaejrS3NtEx7BFFRmGzCgpwY8fHeOr3t7lXBgNbCHCxcuSZLKlSujnj07qGWrRqpUsazS0tO0c+chzfx6ocLDI/XrwlVKTU3Txx+/ZHLFuJl+D3ZQ/wc75vh6CS/PG56Li0u0Ba63Na+pjp0bqUGjavIrXVJRUbFatXyXfp3/t+JiEzXmtdkqWbKE2ndiFKQZLl7MyGTKlfNXj7uC1aJVfVWsGKC0tHTt2nlE38xarAvhl7To13VKSU3Thx89n20/1mu+HXVzd1XdulWVmpqmI4dDHfJ3wDh87rIfh4euSUlXv/kqWbLkDa/7+PgoMjJSkhQREaFq1arl2FeNGjVsyydOnCB0LaaGDXtITZrUVZMmdRUY6K+wsHDdeecTZpcFB5n97e/as+eIatWqom7dgzVj+nyzS4IBgoObaNXqr3N8/e57Omr58k16fth7SklJ1WfTftDUaW84sELYE8e1cxjcu5Fuq19Wx05H668NJ/XsgGa5tq9R2VeP/ytjeojdhy7q4Rf/UFJyxhftew5HaMXfp/T9x73UtF5ZPfGvpvr5z8M6fTYmx/5SU9N15GRUjq+jcCgT4KegoOpmlwE7qlmrikaNelQ97mp3w68UmzWrrwfu76IBA17VyZNn9Mfva/XQQz3VunXeR8jD8fzL+Kh23Ur5WsfFxUXd7mquJ57tqVq1K9zwetv29dW+Y0O9MvIrpaWl66P352t+xwb8WtUENWtW0vCRD6p7jzZydc16m5/bmtXVfQ901KMPv6OTJ89pyR8b9e8H71Sr1g1u6Kd27cp67c3Baty4luo3qC5PTw99Pu1nQlcnw+cu+3L4jbR8fHxsy/Hx8Te8Xrp0advyyZMn89zv+fO5zx2Gomv48IHq0qWNAgP9zS4FDnb27EVNmTJHkjTunWfk7u7w75FgJzlNLXOtbt3aqmbNypKU7c8a4Zw4rp1DxbIlNeKxjJ+XjZmyQSkp6Tdd57G+jeXulnHpOf6zv22Ba6bEpDSN/+xvSZK7m0u+pi0AYJ7p08fo7ns65vje7V/GV6++NtT2eOnSjY4qDQ7UtFlNvffRY9kGrplu79pEXbplzAEeFhqhQwdyn8Mb9vHZ/15Wz7vb3hC4ZvL399VLr1y9986yv7Zk265J0zoaOOgu3dasrjw9PexSK+yPz1325fDQtWrVqrblzBGt16pX7+ocX5s2bcq1r/37r+5sFxeH/ykATBYSMl3x8Ynq3aeL2rThw3lxVLJkxs+Zk5JSTK4ERuG4dg7jXmivUt4eWvDX4ZveNCvTne0zfr107HS0dh64mG2bnQcu6tjpaElSt3aMjgSKimtvghh6msEyxVnL1nVty2GhESZWgty0Dr469UPo6XATK0FhweeuW+PwpLJBg6vD0g8dOnTD6y1aXJ2U97vvvsuxn7CwMP3555+2x1WqVDGoQgDOYMni9Vq9apv8Svvo1VeGmF0OTHD8eJgOHjwhSapVq7LJ1cAIHNfO4e7ONdW1XTVFXUnUxOnZj365XtUKPqoQmDGt1Jbd53Jtu/X/Q9wKZUuqSoVSBSsWQKGQnHz1QzqDZYq35ORU23JOIy1hvhT2E67B565b5/Df7AUFBSkwMFARERHatWuX0tPTs7zx9u/fX++++64kad++fXr55Zf14YcfZpnr5eLFi+rbt69tfliLxaJOnTrZvfaIiAiFhITYfTsAcnflSqzee+8rSdJLLz0q/zK+JlcER0lISFJ4eKRWrdqir75coNTUjJ8nDx58v8mVoaA4rp2DT0kPvfVcW0nSpC+3KurKjXepzk6d6qVty8dP535jtGOh0bbl2tVKK+x8bLbtSvt66vuP71HdGv4qWcJd0TFJOnTiklZuOq2f/zysxKS0bNeDYy39c6P+XLJBZ85ckIuLi8qW9Vez5vXVp09XtW3b5OYdoEjYunWvbbl2bQbLFHYr/tqpFUv/0dmzl+Tq4qKAQB81aVZT9z4QrFZt6t68g1z8s+2obblGrfIFLRV2sm3rAdtyTUK2YonPXcYwZaK0rl276qefflJMTIw2b96sdu3a2V5r2rSpOnfurHXr1kmSJk+erEWLFql79+7y9/fXyZMn9dtvvykmJuPGChaLRffee68qVqxo97ojIiI0btw4u28HQO4mTfpGFy9GqUWLBurfv5vZ5cDOFixYoTden5Lj608+1U/33ne7AyuCPXBcO4dXnmytcgHe2rb3vOYtOZzn9SqUvXrz1PMRcbm2PX/x6usVy95409VMpbw91Kbp1eu/cgHeKhfgrU6tqujpB2/T8HdX6p/9F/JcI+zj6NGsN1Q5deqcTp06p18XrlK3bsF6f+Jw+fjkvJ/h/NLT0/XFjKs3ROx5d0cTq0FenDiWdQqI+NNJCj0docWLtur2rk009t2BKuXjle9+Dx86ow3rMqYIrFO3omrWynn+V5gnPT1dX325yPb4rruDTawGjsTnLuOZErr2799fP/30k6xWq77//vssoaskff7552rbtq3i4jIuuo8cOaKjR69+I2a1Wm0jX/39/fXpp5/aveaZM2fafRvX8vPzc+j2AGexbds+/TxvudzcXDXunWe442kx1qBBTYWEPK8mTQs24gLm47h2Dq0al9e/766nlNR0jZmSvxvhlPRyty3HJeQ+F1h84tWfNHpfs14mq1X6Z/8Frdx0WvuORCgyKlEeHq6qV9Nf/+oZpNsalFOFsiU1c2JPPTzqD+0/duM9BGB/Xl6e6tK1jdq1a6paNSvLu2QJXbp0RVu37NOPP/6p6OgYLV++WZefe09ff/0ON80rwmbN+lW7d2d8SdO9Rzs1blzH5IqQkxJeHup8R2O1Cg5SjZrl5O3tqahLsdqx7ZgWzNugy9FxWrNyj14a/qWmzXhObu43vwFPpuTkVE0Y+4PS0jJuvPjs8Hvt9WeggGZ/s0R7dh+TJHXr3lqNGtUyuSKYjc9dt86Uq5tevXrpk08+kZR9uNiwYUMtWbJE/fv3V3h49pM2W61WValSRQsXLlSNGjXsWa4kafDgwXbfBoDcJSenaMzb/5XVatXgwfcpKIibrBQH3boFq3HjqZKkpMRknQ49pz+XrNeyZZs0evQkvf7Gk+rSpbXJVeJWcVw7B3c3F707qqNcXCz6at4eHTkZla/1PT2ufjBPSU3PtW1yytVpAUp43HipOuG/mxUTl3zD8zsPXNDcxYc0akhLPfdwM5X0cteEFzuqz7Bf81UrjLFm7Vfy9b1xTt4OHZpp0CO99NSTIdq//7i2btmnH374U48+SgBTFG3ZsleTP/5WkhQQ4Kdx4541uSLk5o/l78jH1/uG54Pb19e/H+6kkc9N16EDYdqx7ajm/7ReDw7M+4i3Se/9rAP7Mka+97q/jTrdwc0yC6OtWw7o08k/SpLKBPjqrbFDTa4IjsTnLuOZMiOyl5eXRowYoREjRuixxx7Ltk2HDh105MgRTZw4UR07dlRgYKDc3Nzk7++vTp06afLkyTp48GCWG28BKNqmT/9Zx4+HqVKlshr2/ENmlwMH8fUtpaCg6goKqq4mTeuqV6/OmjrtDX3wwSiFhoZr2HMTtGDBCrPLxC3iuHYOzwy4TbWrldaZ8FhN/e6ffK+flHw1SHV3y/3y0+OakVOJ19zII1N2geu1Ppm5XRt2nJEkNQ4KVItG5fJTKgySXeCaKTCwtKb85xXb6Nbvv/vDUWXBgY4cOa0Xnn9Pqalp8vT00KdTXlVAQGmzy0IusgtcMwUE+mrix0Pk5pZxjv5pzto89zvry2X6df7fkqSGjavplTf7F6xQ2MXRI2EaOXzy/x+z7vr4kxEKCOAXuMUJn7uMV6hvQ1eqVCm98sorWrt2rcLDw5WUlKSIiAitWbNGI0eOlLd3zm8KAIqW48fCNGN6xnxgb731pLy9S5hcEcz2QO8u6tmzg9LT0/Xu+OmKjo4xuyTkE8e1c6hV1U/PPHSbJCnks7+VkHhjEHoz104pUDKbKQOu5V3i6ujW+JtMRZCTH/84aFu+dt5XFB5Vq1ZQ+/YZ/12dOnVO4eGXTK4IRgoLPa/Hh47R5cuxcnV10eTJL6l1a0Y2OrvKVQMV3K6eJCn0dIQuXsj9xoiStOCnDfp8yu+SpBo1y+vTz5+Wl7enXetE/oWFXdDTT7yvK5fj5Orqog8/fkGtWjcwuywUEnzuunVMngTAKcz6ZpFSUlJVtWp5JSQm6Y8/1t3Q5siR07blzZv2KCIiWpLUpUtrwpwiquudwVqyZL3i4xO1bt0O3cfE7k6F49o5DOnbWB4erjp99oq8PN3U644b53YLquFvW27XvJLKlsn4YnzlptNKSEzNcnOsCoG53zTp2ptunbuY+023cnL0VLRtuXwgX9IXVrVrV9WaNdslSRfCI1W+fBmTK4IRwsMjNWTIGF24cEkWi0UT3huuO7u1NbssGKRm7Qq2m2FdvBCtsuVyHgm5dPF2fThhniSpYqUymjrjOZX2z3kUPMxx4UKUnhz6ni5ciJLFYlHIu0+p652tzC4LhQyfu24NoSsAp5CcnDHaKTQ0XKNf/Pim7T///Cfb8vIV0wlniqgyZXxty2fPcpdyZ8Nx7Rw8PDJ+GFWtkq8+fbPLTds/P6i5bfmOQXN1JjE2Swhaq1ruP1WsXbW0bfnY6egc2+XKemurwbG4Z17RE3Xpih4fOkahoeclSW+9/ZR69+5qclUwVB6P27Wr9mjcm98pPd2qwLK++uzLYSpfobRdS0P+RUVd0VND31NYaMZ19OtvDtb9vTubXBUKIz533ZpCPb0AAAC5ufbnqN7eXiZWAiA3oedjdD4iY9TqzX7u37ppBUnS+YtxCjsfe0vbq1O9tG35QmT8LfUB+zt6LMy2XI5Rrk4vJiZOjz8xVkePZtwsafTowRo4sJfJVcFoJ46dty0Hls3+S7Qtmw7pjZdmKS01XX6lS2rqjOdUpWqgo0pEHsXExOvpJybq2LGMedBHvviQBgzsYXJVKKz43HVrGOkKwClMnDhCEyeOyLXN1Kk/6LNpcyVJ33w7XsHBTRxRGky09M8NtmXueu98OK6dw6uT1unVSTdO/XCtFx5pruGPZtzcdODoP7Rl9/kb2qzYeFoD72+g2tVKq1mDstp54OINbZo1KKva1UpLkpb/feqWa36oV33b8pZdN9YC84WFhmvjhp2SpGrVKqh8+QBzC0KBJCQk6emnQrR/3zFJ0jPP/FtPPtXP5KpgtDNhkdry9yFJUpWqgSpXvvQNbXbvPKGXh3+p5ORUlfLx0n/+96xq12Fu7cImISFJw575UAf2n5QkPfl0bz3+5P3mFoVCjc9dt4aRrgCAQmfBghVKSsr9DuWzZv2qNWu2SZKqVCmvVq0aOqI0ALdo1oK9Sk1LlyS9PaydPD1cs7zu6eGqt4e1kySlpKZr1oJ9N/TRrEFZlS2T++iKUY+1VIeWlSVJB45Favu+cCPKRz6sXLlFqalpOb4eERGt4cM/UEpKxk3ZBjx8t6NKgx0kJ6fo+eff044dByRJjz56n0aOGmRyVcivdav35nrcRkZc0Wsvfq2UlIw2/R7seEObwwfDNOq56UpISJaXl4c++ewpNWhU1W4149akJKdq5AuT9c+Ow5KkQY/01PCR/za5KpiFz132ZfhIV1dX15s3MpjFYlFqav7vpIuiYdu2fTp9+pztcVTUFdvyqVPntGDB8izt+/bt5rDaANyaadN+0AcffK0ePdqpZcuGqla1grxLeikuNkGHD5/Ub7+tsX24c3d3U8j4Yaa8/wDIu5NnrujLn/bomQG3qWm9spr76b2aMXe3Tp+LUbWKPnrqwaZqVDfj56dfztutU2eu3NBHp1ZV9PRDTbV26xlt2HFGR09FKyY2WR4eLqpXs4z69wxSswblJEnxCSl6c/J6h/6NyPDuu18oNeV/6nFXOzVrVk+VK5dTiRIeioqK0ZbNezV37lLb9VrLlg00cOA9JleMghg9+iNtWP+PJKlt26bq17+7Dh/OeaS6u7ubatas7KjykEcfvT9fqalp6tLtNjW5rYYqViqjEiXcFR0Vp+1bj+qXnzcoOipjmpjbWtTSvwZ0yrJ+WGiEhj/9X8XEJEiSnnmhl0qVKqFjR87muE3/Mj4qE+Bjvz8K2XrlpanauGGPJCm4bSP16X+HjhwOzbG9u7ubatTMfrTywl/WZHl88ODVY3/9ul06c+bqr1qqVSuvFi3rC4ULn7vsy/DQ1Wq1ymKxyGrlDgZwjJ9//ku//LIy29d27DhgO0FkInQFnMPl6BjN++kvzfvprxzbVKgQqAnvvaD27Zs5rjAAt2zyzG0KKF1C/7q7nhrVDdSUt268wc5PSw7pk5nbc+zD08NN3TtUV/cOOf+07Ux4rF58f5X2HI4wpG7k34ULl/Td7D/03ew/cmzT4652evfdYfLwcHdgZTDasr/+ti1v2rRbD9w/PNf2lSqX08qVX9q7LNyCixcu66c5a/XTnLU5tuna/Ta9Oe4heXhkjRJ2bj+mS5euzsP9yYe/3HR7TzzbU089x0h3R1u+bKttefOmfer3wGu5tq9UKVBLV/wn29fefmN6jut9/eVvWR7f37szoWshxecu+7HLnK4ErgCAgvjyy3Fas2abduw4oNOnzikyMlrR0THy9PRQQICf6jeopTvuaK277+4oLy9Ps8sFkEdWq/TG5PVauv6kHrynvprUC1QZ3xK6dCVRew5F6Mc/Dmrt1rAc15+/9IgioxLUrGE51a9VRmVKl5C/TwmlpqUr6kqS9h2J0KpNp7Vo5XElp+T8M1nY18SJI7R1yz7t3HlIoaHnFRUdo7jYeHl7l1CFCoFq3ry+evfpoubN+fANFBZj3x2oHduOas+ukzpzJlLRUbGKi0uUt5enylcorSbNaqrX/W3UtFlNs0sFYCA+d9mXxWpwQvrOO+8Y2V2ejR071pTtOp/DZhcAuwnK8siqAzm0g7OzqEGWx1YdMqkS2JtF9bI85rguuq4/rut2/8qkSuAIR5Y9nuUxx3bRxXt28XH9e/bl5D9NqgT25ufRM8vj5PScf50B5+bh0jLLY87hRdv153EjGD7SlfATAAAAAAAAQHHmYnYBAAAAAAAAAFCUELoCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIHcjO7Q1dXV6C5vymKxKDU11eHbBQAAAAAAAIDrGR66Wq1WWSwWWa1Wo7sGAAAAAAAAgELP8NBVUr4CV4vFkqf189oOAAAAAAAAAMxkeOg6duzYPLe9cuWKPv/8cyUnJ9sC1AYNGqhZs2YqX768SpYsqbi4OIWHh2vXrl3av3+/pIwA1tPTU88995x8fHyM/hMAAAAAAAAA4JaZFrru2bNHffv2VXJyslxcXPTss89qxIgRql27do7rHDt2TFOmTNH//vc/JSUladGiRZo/f76aNGliVPkAAAAAAAAAUCAuZmw0MjJS9957r44dOyZfX1+tWLFC//nPf3INXCWpdu3a+s9//qOVK1fK19dXx44d07333qvIyEgHVQ4AAAAAAAAAuTMldB09erRCQ0NlsVj01VdfqXPnzvlav2PHjvrqq69ktVoVFhamUaNG2alSAAAAAAAAAMgfh4euV65c0bx582SxWNSgQQP17dv3lvrp27evGjVqJKvVqp9//llXrlwxuFIAAAAAAAAAyD+Hh65r165VQkKCJKlLly4F6uuOO+6QJCUlJWnt2rUFLQ0AAAAAAAAACszhoWtYWJhtuUyZMgXq69r1r+0XAAAAAAAAAMzi8ND18uXLtuXz588XqK9r12d6AQAAAAAAAACFgcND14oVK9qWly5dWqC+rl2/fPnyBeoLAAAAAAAAAIzg8NC1WbNmtuXQ0FBNmzbtlvr57LPPdPr0advj5s2bF7Q0AAAAAAAAACgwh4euTZs2Vf369SVJVqtVo0eP1qxZs/LVx7fffqtRo0bJYrHIYrGofv36atq0qR2qBQAAAAAAAID8cXjoKkmTJk2S1WqVxWJRSkqKHn/8cfXo0UO///67kpOTs10nOTlZv//+u+666y4NGTJEqampslqttv4AAAAAAAAAoDBwM2OjvXr10qhRo/TJJ5/IYrHIarVqxYoVWrFihdzc3FSvXj2VK1dOJUuWVFxcnC5cuKBDhw4pNTVVkmyBrdVq1ciRI3XPPfeY8WcAAAAAAAAAwA1MCV0l6eOPP1bJkiX13nvv2Z6zWq1KSUnR3r17ZbFYsjyfKfN5i8WiN998UyEhIY4rGgAAAAAAAABuwpTpBTKFhIRo/fr1atu2bbbBanaPrVar2rVrpw0bNhC4AgAAAAAAACh0TBvpmqlt27basGGD9u7dq19++UWbNm3SgQMHFBUVpdjYWJUqVUr+/v5q0KCB2rZtq969e6tJkyZmlw0AAAAAAAAA2TI9dM3UuHFjNW7c2OwyAAAAAAAAAKBATJ1eAAAAAAAAAACKGkJXAAAAAAAAADAQoSsAAAAAAAAAGKjQzOl64MABrVq1Sjt37lRkZKQuX74sq9WqFStWmF0aAAAAAAAAAOSZ6aHr2rVrNWbMGK1bty7L81arVRaLJdt1Vq5cqf79+0uSSpQooUOHDsnHx8futQIAAAAAAADAzZg6vcA777yjO++8U+vWrZPVarX9u5muXbuqcuXKio6OVnh4uH766ScHVAsAAAAAAAAAN2da6Pr+++/rnXfeUVpami1o9ff3V8uWLfMUvD7xxBO25QULFtitTgAAAAAAAADID1NC123btumtt96SxWKRxWJRUFCQFi9erIiICG3dulWurq437aN///6yWCyyWq1at26d0tLSHFA5AAAAAAAAAOTOlND17bffto1mbdy4sTZv3qyePXvmOIdrdipXrqxatWpJkuLi4nTgwAG71AoAAAAAAAAA+eHw0DU6OlrLly+3Pf7222/l5+d3S301b97ctnzo0KEC1wYAAAAAAAAABeXw0DVzKgCLxaLg4GDddtttt9xX5cqVbcvnzp0zojwAAAAAAAAAKBA3R2/wzJkztuU2bdoUqK9rR8jGxsYWqK/iI8jsAuAgFjUwuwQ4iEX1zC4BDsJxXXwcWfa42SXAgTi2iw/es4sPP4+eZpcAB/FwaWl2CXAQzuHIL4ePdI2KirIt+/v7F6ivpKQk27K7u3uB+gIAAAAAAAAAIzg8dDVydOq1UwoEBAQUqC8AAAAAAAAAMILDQ9fy5cvblg8ePFigvjZu3GhbrlKlSoH6AgAAAAAAAAAjWKxWq9WRGwwNDVX16tUlSb6+vjp79qy8vb2ztHF3d7fdbCstLS3bfjZu3KiOHTva2kdFRd3QD7Jz2OwCYDfXz9fLvi662NfFR9Z9bdUBk+qAvd04pyfHddGW9dguWf0Rk+qAvcWdmp3lMefxoovzeHFy/fXZIZPqgL3dOIcrx3XRZvw9kBw+0rVq1apq2LChJCkmJkafffZZvvtITU3VSy+9JEmyWCzq0KEDgSsAAAAAAACAQsHhoaskjRgxQpJktVo1btw4rVmzJs/rJicn69FHH9WmTZtsz7344ouG1wgAAAAAAAAAt8KU0HXo0KFq1KiRLBaLEhIS1LNnT40bN04XL17McZ3Lly9r9uzZatasmebOnSuLxWIb5Xrvvfc6sHoAAAAAAAAAyJkpoaurq6t+/fVXBQYGymKxKCkpSePHj1elSpXUqFGjLPO4tm/fXkFBQQoMDNRjjz1mu/mW1WpV+fLl9dNPP5nxJwAAAAAAAABAtkwJXSWpVq1aWr58uerUqWN7Li0tTQcPHrSNYpWkzZs36+jRo0pLS5PVapXFYpHValWdOnW0cuVKVahQwaw/AQAAAAAAAABuYFroKklNmjTR9u3bNWLECNuNsKxW6w3tMgNYSXJ3d9ezzz6rLVu2qH79+g6rFQAAAAAAAADyws3sAkqVKqVPPvlEY8aM0fz587VmzRrt2LFDERERio6Olre3twIDA9WwYUPdeeed6tevnypXrmx22QAAAAAAAACQLdND10z+/v564okn9MQTT5hdCgAAAAAAAADcMlOnFwAAAAAAAACAoobQFQAAAAAAAAAMZEro6urqKldXV3l6ehaoH19fX7m6usrNrdDMkgAAAAAAAACgmDMlrbRarVn+tyD9FLQPAAAAAAAAADAS0wsAAAAAAAAAgIGcOnTNHOVqsVhMrgQAAAAAAAAAMjht6Jqenq7ExERJkpeXl8nVAAAAAAAAAEAGpw1dd+3apfT0dFksFgUEBJhdDgAAAAAAAABIctLQ9dChQxo5cqTtcaNGjcwrBgAAAAAAAACu4WavjqdMmaIpU6bk2iYtLU21atXKc59paWmKiopSXFxclud79ux5SzUCAAAAAAAAgNHsFrpGR0fr5MmTslgsthteXc9qterkyZO31H/mzbMqV66swYMH32qZAAAAAAAAAGAou4WumXIKXI3ot1mzZvruu+/k6+trl21ca86cOXbfxrX8/PzUq1cvh24TAAAAAAAAQMHZLXRt1qxZjiNQv/nmG0mSi4uLHnnkkTz36e7uLh8fH9WoUUPt2rVTq1atDKk1LwYNGmQbXesI9erVI3QFAAAAAAAAnJDdQtcHHnhADzzwQLavffPNN7JYLHJxcdHMmTPtVYLhAgICNGzYMLtuw2q1KiQkxK7bAAAAAAAAAGA/dp9eICf2mnbAngIDAzV27Fi7b4fQFQAAAAAAAHBepoSuq1atkiSH/lwfAAAAAAAAABzBlND19ttvN2OzAAAAAAAAAGB3LmYXAAAAAAAAAABFiSkjXS9fvqw1a9ZIklxcXHTvvffmu4/ff/9d6enpkqQuXbrIx8fH0BoBAAAAAAAA4FaYMtL1s88+U58+fdSnTx998cUXt9THl19+WeA+AAAAAAAAAMBopoSuc+bMkdVqlSS98MILt9TH888/L6vVKqvVqu+++87I8gAAAAAAAADgljk8dD137pz2798vi8Uif39/de3a9Zb66dq1qwICAiRJu3bt0oULF4wsEwAAAAAAAABuicND1507d9qW27RpIxeXWyvBxcVFwcHB2fYLAAAAAAAAAGZxeOh6/Phx23L9+vUL1FdQUFC2/QIAAAAAAACAWdwcvcErV67Ylv38/ArU17XrX758uUB9OauwsLA8tatSpYqdKwEAAAAAAAAgmRC6lihRwrYcExNToL6uXd/V1bVAfTmrqlWr5qld5o3LAAAAAAAAANiXw0PXwMBA23JBpwS4dv1r+7WXiIgIhYSE2H07AAAAAAAAAJyXw0PXunXrSsoYeblq1SolJyfLw8Mj3/0kJydr1apVtsc1atQwqsQcRUREaNy4cXbfTn6EhoaaXQIAAAAAAACAazg8dG3durV8fHwUGxurK1eu6LPPPtOoUaPy3c+0adNs87h6eXmpffv2RpeaxcyZM+3a//XyOt8tc7UCAAAAAAAAhYvDQ1dXV1c98MAD+u677yRJb731ltq2bat27drluY8NGzborbfeksVikSTde++9tzRaNj8GDx5s1/4BAAAAAAAAFA0OD12ljKD1hx9+UHp6uhISEtS9e3d9+OGHevrpp3O9IVZaWpr+97//6dVXX1VSUpKsVqtcXV01ZswYu9c8Z84cu2/jWn5+furVq5dDtwkAAAAAAACg4EwJXYOCgvTmm28qJCREFotF8fHxeuGFF/T++++rX79+atu2rSpVqqRSpUopNjZWZ86c0ebNm/Xzzz/r3LlzslqtslgsslgsevXVV9WwYUO71zxo0CDbyFpHqFevHqErAAAAAAAA4IRMCV0lady4cTpy5Ih++OEHWSwWWa1WnTlzRlOnTtXUqVOzXcdqtUqSrf3AgQP17rvvOqzmgIAADRs2zK7bsFqtCgkJses2AAAAAAAAANiPaaGrJH3//fdq3Lixxo4dq9TUVNtI0sxw9VqZI1szpxSYMGGCXn75ZYfWGxgYqLFjx9p9O4SuAAAAAAAAgPNyMbuA119/XYcPH9Yzzzwjf3//bANXKSOIDQgI0AsvvKCjR486PHAFAAAAAAAAgLwwdaRrpho1aujzzz/X559/rt27d2vv3r2KjIxUTEyMfH19FRAQoCZNmqhx48ZmlwoAAAAAAAAAuSoUoeu1mjZtqqZNm5pdBgAAAAAAAADcEtOnFwAAAAAAAACAooTQFQAAAAAAAAAMVOimFwAK4syZC5o9+zetXr1V589HyMPDXVWrVtDdd3fSwIH3yMurhNklwiDs6+KF/V201a/XO0/tWrdppNmzJ9i3GDgMx7XzGf/ag3rx2Xttj3s+OEHrNh3MsX21KoF6ctCd6tKxkWpWK6eS3p6KiUvU4WPntGz1bn31/UpdjLyS7bpvjOyjN0f1zVd9Ez5ZoPc+/SVf68C+Ppr0jb788uo++ebb8QoObmJiRSioyMho7d59WLt3H9aePUe0Z88RRUfHSJL69OmqiRNHmVwhjBAbG681a7Zpz54j2rv3qC6ER+rSpStKSkqWj09J1a5TVbd3bql+/bvL39/X7HJhIK7PjEXoiiJj5cotevnljxUbG297LiEhSZcvH9XevUc1b95fmjFjjKpXr2RilTAC+7p4YX8DRQ/HtfNp2rCaXniiZ57bD+jTQf95f4i8vTyzPF+mdCm1bVlXbVvW1XNDe+ix5z/XyvV7DanxyPFzhvQDYxw4cFyzZi0yuwwYrH37R8wuAQ6we/dhjX7xo2xfu3Tpsi5tuaytW/bqq69+0YeTXlSnTi0cXCHsgesz4xkeunbt2tW2bLFYtGLFilzbGCGn7aD42L//mEaN+kCJicny9vbS00/3V3BwUyUmJmnx4nX66aelOnnyjJ56KkTz509WqVLeZpeMW8S+Ll7Y38XLgAE9NeDhu3N83Ztv1osEjmvnY7FYNPX9oXJ3d9OFi5dVrqxfru3btqqr6R8/JVdXF6Wlpev7+ev0+187dC48SlUrB2hgv07q1b2FAvx9NPfLkWrd/XWdDL2YpY8vZq/QwsVbc92Oq6uLlv70pvx8vXX5Srx+W7q9wH8rjJGenq4xb/9XqalpCgjwU2TkZbNLgh1UqlRWtWpV0fr1/5hdCuygYsVAtQluokaN6qhixUCVLeuv9HSrws9HaunSDVq27G9FRV3Rc8++q3k/f6z69WuaXTIKgOsz+zA8dF29erUsFousVqssFkuubYyQ23ZQfEyY8IUSE5Pl5uaqr78OUfPm9W2vtWt3m6pXr6RJk2bq5MkzmjlzoV544WETq0VBsK+LF/Z38VImwE9BQdXNLgN2xnHtfJ4b0kOtmtXWwaNn9Nuf2/Xy8/fn2v6l5+6Tq2vGrSNGj/1WX8y+Ojhix+4T+nXJNr3/1gANf/IeeXt56oUn79boMd9m6eNi5JUcpx7I1OOOpvLzzfjQ98viLUpMSrmVPw92MPvb37VnzxHVqlVF3boHa8b0+WaXBIMMG/aQmjSpqyZN6iow0F9hYeG6884nzC4LBgsObqJVq7/O8fW77+mo5cs36flh7yklJVWfTftBU6e94cAKYTSuz+zD1BtpWa3WAv8Ddu8+rG3b9kmS+vXrnuXkkGno0N6qXbuqJOnbbxcpJSXVoTXCGOzr4oX9DRQ9HNfOp0qlAL09up8kacQbs5Sch/0R3LKuJCniUkyWwPVa709ZeLV9izq3VNvDfTvalufMX39LfcB4Z89e1JQpcyRJ4955Ru7uzGhXlAwfPlBdurRRYKC/2aXAjlxdXW/aplu3tqpZs7Ikadu2/fYuCXbE9Zn9GP4O2Llz55uOPM1LGyCvli/fZFvu169btm1cXFzUu3cXffzxt7pyJU6bN+9Wx47MO+Ns2NfFC/sbKHo4rp3PJ+MHy6eUl76bt07rNx9U53YNbrqOx/+HbKeumzLgWldiEnQx8orKBvja2ueHT6kS6tUj47+LE6cvaMOWQ/nuA/YREjJd8fGJ6t2ni9q0aazNm/eYXRIAOylZ0kuSlMQvDZwa12f2Y5fpBYxoUxhFREQoJCTE7DJwne3bM75V8/YuoUaNch4p0br11Tul7thxgBOEE2JfFy/sb6Do4bh2Ln17tdE93ZorMipGb0yYk+f1jhw/p+ZNaqp61bI5tvEpVUJlAzLueH34Fm6A1adXsO0mXT8s2JDv9WEfSxav1+pV2+RX2kevvjLE7HIA2NHx42E6ePCEJKlWrcomV4OC4PrMfvitRz5ERERo3LhxZpeB6xw7FipJqlatotzccv4ZRK1aVW5YB86FfV28sL+Ln6V/btSfSzbozJkLcnFxUdmy/mrWvL769Omqtm2b3LwDFHoc187Dz9dbk8Zl3KX87YlzFRkVm+d1v/xupT774HEFlvHR4wO76qvvV97Q5rXhvW3LX3134+s3w9QChc+VK7F6772vJEkvvfSo/Mv4mlwRAKMlJCQpPDxSq1Zt0VdfLlBqapokafDg3Of6RuHG9Zn9ELrm0cyZMx26PT+/3O8KiwxJScmKisq4yUKFCgG5tvXzKyVv7xKKj0/U+fMRjigPBmJfFy/s7+Lp6NGsF2+nTp3TqVPn9OvCVerWLVjvTxwuH5+SJlWHguK4di7vvv6QKpQrrY1bD+mbH9fka91vf1qj9q2DNLB/J30yfrCaN6mhP5b9o/MXolW1coAG9Omg+3u2kiR9MPVXrdqwL1/9V6sSqA5tgiRJG7ce0onTF/K1Puxj0qRvdPFilFq0aKD+/bP/eSoA57NgwQq98fqUHF9/8ql+uve+2x1YEYzE9Zl9Ebrm0eDBg80uAdmIi0uwLXt7e920vZdXxgkiPj7RnmXBDtjXxQv7u3jx8vJUl65t1K5dU9WqWVneJUvo0qUr2rpln3788U9FR8do+fLNuvzce/r663e4KYuT4rh2Hu1bB+mxh25XSkqqRrwxK9/rp6db9dToGVq84h+9POx+DRnQRUMGdMnSZs3G/Zo0bVG+A1dJGtC3g1xcMu4H/P3PjHItDLZt26ef5y2Xm5urxr3zDPfvAIqBBg1qKiTkeTVpWtfsUlAAXJ/ZF59a4NSSkpJty3n5EO7hkdEmMTH5Ji1R2LCvixf2d/GyZu1X8vUtdcPzHTo006BHeumpJ0O0f/9xbd2yTz/88KceffReE6pEQXFcOwd3d1dNnThULi4umjJjifYfDrulfurVqaSH+3ZUo3pVsn29TYs6Gvzg7Tp49KzOhUflq++HeneQJCUkJmvBH5tvqT4YJzk5RWPe/q+sVqsGD75PQUHVzS4JgIG6dQtW48ZTJUlJick6HXpOfy5Zr2XLNmn06El6/Y0n1aVLa5OrxK3i+sy+XMwuACgIT08P23JKSupN2ycnZ7QpUcLjJi1R2LCvixf2d/GSXeCaKTCwtKb85xXbReD33/3hqLJgMI5r5/DysPtVv05lnQ6L0Huf/nJLfbRvHaSVC8aoV/cWOns+So+P/K9qthwmv9qPqW7wcI18a5biE5L0rwfaae2icWpQN+83YGndvLaCaleUJP3+1w5diUm4yRqwt+nTf9bx42GqVKmshj3/kNnlADCYr28pBQVVV1BQdTVpWle9enXW1Glv6IMPRik0NFzDnpugBQtWmF0mbhHXZ/Zl+EjX06dPG91lnlSrVs2U7cJcJUteHf4eH3/zi+6EhIwh8N7eJexWE+yDfV28sL9xrapVK6h9+9u0Zs12nTp1TuHhl1S+fBmzy0I+cVwXfkG1K+ql5+6TJI0e+63iE5Ly3YeHh5tmTR2m0n4ldf5CtLr0eUfhFy/bXj97PkpfzF6h9ZsOat3vIapUoYxmTH5Kne4bm6f+H+539QZaPyxgagGzHT8WphnT50uS3nrrSY5XoBh5oHcXrV69VUuWrNe746era9c2Kl3ax+yykE9cn9mX4aFrjRo1HD6Hj8ViUWrqzRN5FD2enh4qXdpH0dExOn8+Mte2ly/H2uYdqVAh0BHlwUDs6+KF/Y3r1a5dVWvWbJckXQiPJHR1QhzXhd/zj/eUp6e7jp8Kl7eXp/rf1/aGNg2vmS7g9vYNVb5saUnS4uX/KD4hSd1vb6rKFTOOz//O+itL4HqtA0fO6MdfNmjIgC5q0bSWmjSopj0Hch+84e7uqn73BkuSwi9Ea9ma3bfyZ8JAs75ZpJSUVFWtWl4JiUn64491N7Q5cuTqft28aY8iIqIlSV26tOZDO+Dkut4ZrCVL1is+PlHr1u3QfdxQy+lwfWZfdpvT1Wq12qtrIIs6dapp27Z9On36nFJT0+Tm5pptu+PHr85JVrt2VUeVBwOxr4sX9jeuxT1ZigaO68LN08NdklSrenl9M23YTdu/PqKPbblBh1E6HZak+nUq2Z7btfdkruv/s+ekhgzIWA6qXfGmoevddzZXgH/GKKq5v25UejqfN8yWnJwiSQoNDdfoFz++afvPP//Jtrx8xXRCV8DJlSnja1s+e/aCiZWgILg+sx+7zOman8DVYrFk+WdUWxQfLVs2lCTFxydq376jObbbunWPbblFiwZ2rwvGY18XL+xvXOvosasXeeUY5eq0OK6LvtS0dNuyq2v2H9oyubtffT01Le2mfT/c9+rUAnPmb7iF6gAARgoPv2Rbzsud71E4cX1mP4aPdJ05c2ae24aGhmrChAlKTk6W1WqVl5eX7rjjDjVr1kzly5dXyZIlFRcXp/DwcO3atUurVq1SQkKCLBaLPD099eabb6pKlezviIrio1u3tpo+fZ4kaf785brttno3tElPT9fChaskSb6+JRUc3NShNcIY7Ovihf2NTGGh4dq4YackqVq1CipfPsDcgnDLOK4Lt6dfmqGnX5qRa5s3RvbRm6P6SpJ6PjhB6zYdzPL6ydCrI506tKmnP1fuzLGvjsH1bcunQi/mut0ypUvpri63SZJ27zt101GxcIyJE0do4sQRubaZOvUHfTZtriTpm2/HKzi4iSNKA+AAS/+8+gVYUFB1EytBQXB9Zj+Gh66DBw/OU7tVq1Zp9OjRSk5OVqlSpTR27Fg99dRTKlUq5zsYx8bGasaMGQoJCVFMTIw+/fRT/fTTT+rSpYtR5cMJNW0apFatGmnbtn2aP3+Z+vS5U82b18/S5uuvF+rYsVBJ0qOP3m+7CzacC/u6eGF/Fw8rV25R584tc/wZU0REtIYP/8B2N9UBD9/tyPJgMI7rom/1hv2Ki09SSW9PPTHoTv34ywbtOxR2Q7sedzTV/Xe1kiSdOXdJu/blHqL+64G28vDI+G9hDjfQAgC7WrBghXr16pTlzvbXmzXrV61Zs02SVKVKebVq1dBR5cFgXJ/Zjyn/L506dUr9+/dXVFSUKleurGXLlql+/fo3Xa9UqVJ68cUX1atXL3Xv3l1hYWH617/+pW3btqlGjRr2LxyF1ptvPqkBA15RYmKyhg4do2ee+ZeCg5soMTFZixev1dy5SyVJNWpU1pAhvc0tFgXCvi5e2N9F37vvfqHUlP+px13t1KxZPVWuXE4lSngoKipGWzbv1dy5SxUVdUWS1LJlAw0ceI/JFaOgOK6LtstX4vXxf3/TmNH95evjpRULxuh/s5Zp5fq9ir4cp3KBfurVo4WGPHSHXF0zZjob88Hcm05Pljm1QEpKquYu3Gj3vwNA9jLnfcyU+R4tSadOndOCBcuztO/bt5vDaoNxpk37QR988LV69Ginli0bqlrVCvIu6aW42AQdPnxSv/22Rjt2HJAkubu7KWT8sJtOKYPCjesz+7BYTbjjVZ8+ffTrr7/KYrFo1apV6ty5c777WLt2re644w5ZLBbdd999WrhwofGFFkmHzS7Ablau3KKXX/5YsbHx2b5eo0ZlzZgxRtWrV8r2decXdN1j9jX7umgo3vs767626oBJddhP165P6uyZ3H9WLEk97mqnd98dJl/fnH8R48wsun5eLI7rontcS9cf2yWrP2JSHfl3s+kFMn3w9kA9N7SHXFxyvoVEcnKqxk2apykzFue6zaDaFfXPyg8lSX+u3Kl+Q25+w6bCIu7U7CyPi+J5/GaKy/QCxeU8/tprn+iXX1bmuf2hQ7/ZsRqzXH99dsikOuyna9cndPbMzW+MVaFCoCa894I6dGjugKocz6Lrf2ZfNI/rTFyfXf85u+AcPtL1woUL+uOPP2SxWNSqVatbClwlqXPnzmrTpo22bNmixYsX68KFCypXrpzB1cKZdO3aRosWTdW33y7S6tXbFB4eIXd3N1WrVlE9e3bUoEG95OXFHVKLAvZ18cL+LtomThyhrVv2aefOQwoNPa+o6BjFxcbL27uEKlQIVPPm9dW7T5cbfuIE58ZxXfS9Ov57/fDLBj320B1q3zpIVSsHytvLQ7FxiTp+KlzrNx/UV9+v0tET52/a14C+HWzLc+YztQAA2NuXX47TmjXbtGPHAZ0+dU6RkdGKjo6Rp6eHAgL8VL9BLd1xR2vdfXdHeXl5ml0uDML1mfEcPtJ14cKF6tu3rywWi4YPH65PPvnklvsaNWqUpkyZIovFovnz56t3797GFVpkFe1vZoq34jX6sXhjXxcfRX+kKzIUlxFSyOS8I12RP4x0LT44jxcnRX+kKzIUt5GuMH6ka86/97GTM2fO2JZ9fX0L1JePj0+2/QIAAAAAAACAWRweusbHX50b4vTp3O9SejOhoaHZ9gsAAAAAAAAAZnF46FqpUsaEu1arVUuWLFFqauot9ZOSkqIlS5bYHlesWNGQ+gAAAAAAAACgIBweugYHB0uSLBaLLl68qHfeeeeW+gkJCdGFC1fvpte2bVtD6gMAAAAAAACAgnB46FqnTh21bt1aUsZo1/fee0/jxo1TWlpantZPT09XSEiIJkyYIIvFIovFojZt2qhOnTr2LBsAAAAAAAAA8sThoaskTZkyxRaYWq1WjR8/Xk2aNNG0adN04sSJbNc5ceKEpk2bpiZNmthGx1qtVrm4uOjTTz91YPUAAAAAAAAAkDM3Mzbatm1bffTRR3rxxRdtwevBgwc1YsQIjRgxQqVKlVLZsmVVsmRJxcXF6eLFi4qNjZWUEbRKsq330Ucf2aYsAAAAAAAAAACzmRK6StLIkSPl4+OjkSNHKi4uzhaiSlJMTIxiYmKyXS+znbe3tz799FM9/vjjjiwbAAAAAAAAAHJlyvQCmR5//HHt3btXAwYMkIeHxw2vWyyWG55zd3fXgAEDtGfPHgJXAAAAAAAAAIWOaSNdM1WvXl3ff/+9IiMjtXjxYm3atEkHDhxQVFSUYmNjVapUKfn7+6tBgwZq27at7rnnHgUEBJhdNgAAAAAAAABky/TQNVNAQIAeeeQRPfLII2aXAgAAAAAAAAC3zNTpBQAAAAAAAACgqCF0BQAAAAAAAAADEboCAAAAAAAAgIEKxZyuVqtVf/75p1atWqWdO3cqMjJSly9fltVq1bFjx25on5KSooSEBEmSq6urSpYs6eiSAQAAAAAAACBbpoeu3333ncaNG6cTJ05ked5qtcpisWS7zpYtW9S5c2dJkru7u8LCwhQYGGj3WgEAAAAAAADgZkybXiA9PV1Dhw7V4MGDdeLECVmtVtu/m+nQoYOCg4NltVqVkpKi77//3gEVAwAAAAAAAMDNmRa6Dh8+XLNmzbIFrRaLRU2bNlW/fv3ytP7QoUNty4sWLbJXmQAAAAAAAACQL6aErsuXL9fnn38ui8Uii8Wijh07au/evdq5c6fmzZsnF5ebl9W3b1+5urrKarXq77//VlJSkgMqBwAAAAAAAIDcmRK6jhs3zrbcuXNnrVixQg0aNMhXH2XKlFG9evUkSUlJSdq/f7+RJQIAAAAAAADALXF46HrhwgX9/fffkiRXV1d9/fXXcnd3v6W+brvtNtvy4cOHDakPAAAAAAAAAArC4aHr+vXrbXO4durUSTVr1rzlvipUqGBbvnDhghHlAQAAAAAAAECBODx0PXfunG25efPmBerL19fXthwbG1ugvgAAAAAAAADACA4PXa9cuWJbvjY0vRXx8fG25RIlShSoLwAAAAAAAAAwgsND1zJlytiWo6OjC9RXWFiYbTkgIKBAfQEAAAAAAACAERweul47D+vevXsL1NfatWttywWZGxYAAAAAAAAAjOLw0LV9+/ayWCyyWq3asGGDoqKibqmfJUuW6MyZM5IkT09PBQcHG1kmAAAAAAAAANwSh4euZcuWVcuWLSVJiYmJmjhxYr77iIuL0+jRoyVJFotF3bp1k4eHh6F1AgAAAAAAAMCtcHjoKkmvvPKKbXny5MmaM2dOnte9dOmS7r33Xh08eDDb/gAAAAAAAADATKaErv3791enTp1ktVqVlpamRx55RI899ph27NiR4zp79uzR+PHjVb9+fdtcrhaLRb1791bHjh0dVToAAAAAAAAA5MrNrA0vWLBAwcHBOn78uKxWq2bPnq3Zs2fL29tbaWlptnaVKlXSpUuXlJKSIkmyWq2yWCySpLp162rWrFlmlA8AAAAAAAAA2TJlpKskBQQEaO3aterQoYPtOavVqri4OFksFluwev78eSUnJ8tqtUqS7SZc7dq105o1a+Tj42NK/QAAAAAAAACQHdNCVyljFOvq1av1ySefqGrVqrbnrVZrlpD12ucDAwP1wQcfaPXq1SpfvrzDawYAAAAAAACA3Jg2vUAmV1dXjRgxQs8//7xWrVqlNWvWaMeOHYqIiFB0dLS8vb0VGBiohg0b6s4771T37t3l5eVldtkAAAAAAAAAkC3TQ9dMrq6u6tatm7p162Z2KQAAAAAAAABwyxw+vcDvv/+uFi1aqEWLFurYsaNSU1MdXQIAAAAAAAAA2I3DQ9d9+/Zp586d2rVrlypUqCA3t0Iz2BYAAAAAAAAACszhoaunp6dtuU6dOo7ePAAAAAAAAADYlcND14oVK9qWXV1dHb15AAAAAAAAALArh4euDRo0sC2fPHnS0ZsHAAAAAAAAALtyeOjatGlT1a9fX1arVcuWLVNKSoqjSwAAAAAAAAAAu3F46CpJo0ePliRFRkbqww8/NKMEAAAAAAAAALALU0LXxx9/XH369JHVatXYsWP13//+14wyAAAAAAAAAMBwpoSukvTjjz/q2WefVXp6up5//nl16tRJ33//vc6cOWNWSQAAAAAAAABQYG5mbLRWrVq2ZVdXV6WlpWnjxo3auHGjJMnb21ulS5eWu7t7nvqzWCw6duyYXWoFAAAAAAAAgPwwJXQ9efKkLBaL7XHmstVqlSTFxcUpLi7upv1YLBZZrdYsfQEAAAAAAACAmUwJXaWrAavZfQAAAAAAAACAkUwJXQcPHmzGZgEAAAAAAADA7kwJXWfOnGnGZgEAAAAAAADA7lzMLgAAAAAAAAAAihKLlYlRAQAAAAAAAMAwDh/pGh8fr3Pnzik+Pt7RmwYAAAAAAAAAu3NI6Przzz+rT58+KlOmjHx8fFSlShX5+PjI399fvXv31k8//eSIMgAAAAAAAADA7uw6vUB4eLj69OmjzZs3S5Ky25TFYpEktWzZUgsXLlSlSpXsVQ4AAAAAAAAA2J3dQtfo6Gi1bNlSJ0+elNVqtYWr2cksoXr16tq+fbvKlCljj5IgSTpsdgGwm6DrHrOviy72dfGRdV9bdcCkOmBvFjXI8tiqQyZVAkewqN51z3AeL7qynsdL1RhsUh2wt9iT31z3DMd10XX99Rnv2UXV9e/XXIsXbddfjxvBbtMLDB8+XCdOnJCUMZrVarXKarXK29tbFStWlLe3t+25zED29OnTGjZsmL1KAgAAAAAAAAC7s0voeurUKc2ZM8cWtlosFo0cOVIHDx5UTEyMwsLCFBMTo4MHD2rkyJFycXGxtZ03b56OHz9uj7IAAAAAAAAAwO7sErp+//33Sk9Pl9VqlYuLi+bNm6fJkycrKCjrMPygoCBNnjxZ8+fPl8VisQWvc+bMsUdZAAAAAAAAAGB3dgld//77b0kZ0woMHjxYffr0ybX9/fffr8GDB9vmds1cHwAAAAAAAACcjV1C13379tmWhwwZkqd1rm23f/9+w2sCAAAAAAAAAEewS+gaFRVlW27WrFme1slsZ7Vas6wPAAAAAAAAAM7ELqHrlStXMjp3cVGpUqXytE6pUqXk4pJRTmxsrD3KAgAAAAAAAAC7s0vomjk3q8Viydd6me0z1wcAAAAAAAAAZ2OX0BUAAAAAAAAAiitCVwAAAAAAAAAwEKErAAAAAAAAABjIzV4dWywWpaWlqWvXrnleJy0tzbacn/UsFotWrFiRr/oAAAAAAAAAwB7sFrpKGTfEWrNmjV3Xs1qt+b5hFwAAAAAAAADYi11D1/yGoYSnAAAAAAAAAJyd3UJXq9Vqr64BAAAAAAAAoNCyS+h64sQJe3QLAAAAAAAAAIWeXULX6tWr26NbAAAAAAAAACj0XMwuAAAAAAAAAACKErveSKsomTNnjkO35+fnp169ejl0mwAAAAAAAAAKjtA1jwYNGiSLxeKw7dWrV4/QFQAAAAAAAHBChK75EBAQoGHDhtl1G1arVSEhIXbdBgAAAAAAAAD7IXTNh8DAQI0dO9bu2yF0BQAAAAAAAJwXN9ICAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgdzMLgAFExYWlqd2VapUsXMlAAAAAAAAACRC13yJiIhQSEiI2WVkUbVq1Ty1s1qtdq4EAAAAAAAAgETomi8REREaN26c2WUAAAAAAAAAKMQIXfNo5syZDt2en59fntqFhobauRIAAAAAAAAA+UHomkeDBw82u4RsMVcrAAAAAAAAULgQuubRnDlzHLo9Pz8/9erVy6HbBAAAAAAAAFBwhK55NGjQIFksFodtr169eoSuAAAAAAAAgBMidM2HgIAADRs2zK7bsFqtCgkJses2AAAAAAAAANgPoWs+BAYGauzYsXbfDqErAAAAAAAA4LxczC4AAAAAAAAAAIoSQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABnIzuwCgoCIjo7V792Ht3n1Ye/Yc0Z49RxQdHSNJ6tOnqyZOHGVyhTAS+7t4OnPmgmbP/k2rV2/V+fMR8vBwV9WqFXT33Z00cOA98vIqYXaJsIOPJn2jL7/8xfb4m2/HKzi4iYkVoaD27DmitWu2a/uO/Tp2NFSXLl2Wu7ubypYroxYtGqh/v+5q2aqh2WXCYJzDnU/Ia//Wi8/0sj2++6H3tW7TwRzbV6sSqCcGdVWXDo1Us3pZlfTyVExcog4fO6fla/boq+9X6mJkTI7rL/nxNXVq2yBPtZWqMTjvfwgMx7V48cF7NiSuxwuK0BVOr337R8wuAQ7E/i5+Vq7copdf/lixsfG25xISknT58lHt3XtU8+b9pRkzxqh69UomVgmjHThwXLNmLTK7DBho0MDXtG3b/hueT0lJ1amTZ3Xq5Fn9smCFHujdRePHPy8PD3cTqoTROIc7nyYNq+mFx+/Kc/uH+rTXf957TN5enlmeL1O6lNq2rKu2Levq2SE99NgLn2vV+n1GlwsH41q8eOA9GxLX40YgdEWRUqlSWdWqVUXr1/9jdilwAPZ30bd//zGNGvWBEhOT5e3tpaef7q/g4KZKTEzS4sXr9NNPS3Xy5Bk99VSI5s+frFKlvM0uGQZIT0/XmLf/q9TUNAUE+Cky8rLZJcEAFy5ckiSVK1dGPXt2UMtWjVSpYlmlpadp585Dmvn1QoWHR+rXhauUmpqmjz9+yeSKUVCcw52PxWLR1PeGyN3dTRcuXla5sn65tm/bsq6mf/SkXF1dlJaWru/nr9cfy3boXHi0qlYK0MP9OqpX9+YK8C+luV+MUJseb+pk6MUc+9u+67iefflLo/8s2AnX4kUX79ngetwYhK5wesOGPaQmTeqqSZO6Cgz0V1hYuO688wmzy4KdsL+LlwkTvlBiYrLc3Fz19dchat68vu21du1uU/XqlTRp0kydPHlGM2cu1AsvPGxitTDK7G9/1549R1SrVhV16x6sGdPnm10SDFCzVhWNGvWoetzVTq6urllea9asvh64v4sGDHhVJ0+e0R+/r9VDD/VU69aNTaoWRuAc7nyeHdJdrZrV0qGjZ7Vo6Xa9POy+XNuPfu5eubpm3CbkpbGz9cV3K22v7dh9Qr/+uU3vvfmQhj95t7y9PPXCEz01euzsHPuLT0jS/sNnjPljYBdcixcPvGeD63FjcCMtOL3hwweqS5c2Cgz0N7sUOAD7u/jYvfuwtm3L+Bliv37ds3xYzzR0aG/Vrl1VkvTtt4uUkpLq0BphvLNnL2rKlDmSpHHvPCN3d74fLiqmTx+ju+/peMOHt0z+ZXz16mtDbY+XLt3oqNJgB5zDnU+VSmX09ot9JUkj3pyVp/0R3LKOJCnyUkyWwPVaE//zq225TYs6BlQKM3EtXjzwnl28cT1uHEJXAEChtHz5Jttyv37dsm3j4uKi3r27SJKuXInT5s27HVIb7CckZLri4xPVu08XtWnDiIni5tobM4SePm9iJSgozuHOZ3LIo/Ip5aXvfl6n9ZsP5Wkdj///IJ7blAFXYhIUEXnl/9tnH+AAcD68ZxddXI8bh7g6HyIiIhQSEmJ2GQBQLGzfnjF5v7d3CTVqlPPImNatr17w7dhxQB07trB7bbCPJYvXa/WqbfIr7aNXXxlidjkwQXJyim3ZxYWxAc6Mc7hz6durje7p1lyRUbF6c8KPeV7vyPHzat6khmpULZtjG59SJRQY4GtrD6Bo4D27aOJ63FiErvkQERGhcePGmV0GABQLx46FSpKqVasoN7ecR8bUqlXlhnXgfK5cidV7730lSXrppUflX8bX5Ipghq1b99qWa9eukktLFHacw52Hn6+3Phw7UJI0ZuJPioyKzfO6X32/UtMmDlVAGR89PrCLvvp+1Q1tXn3hAdvyl99nPwVBpqDaFbVq4RjVrVVBJTzdFXkpVv/sPalfl2zTvEWblJqalufaANgX79lFD9fjxiN0zaOZM2c6dHt+frnfKRQAirKkpGRFRWX8FLFChYBc2/r5lZK3dwnFxyfq/PkIR5QHO5g06RtdvBilFi0aqH//7H+KjKItPT1dX8y4epOGnnd3NLEaFATncOfy7msPqkK50tq49bC+mbsmX+t++9NatWsdpIH9OmpyyKNq1riGFi//R+cvRKtqpQAN6NtB993VUpL04dRFWr1hf679lS9bWuXLlrY9rlyxjCpXLKN7u7fQi8/00qBnp+rQsXP5/hsBGIv37KKJ63HjEbrm0eDBg80uAQCKjbi4BNuyt7fXTdt7eWV8YI+PT7RnWbCTbdv26ed5y+Xm5qpx7zwji8VidkkwwaxZv2r37sOSpO492qlxY26446w4hzuP9q2DNPihzkpJSdXIN2fle/30dKueHv2Fliz/Ry8Nu09DBtyhIQPuyNJmzcb9mvTZb7kGrunpVq1av09LV+3S3gOhioyOlU/JEmrWuLqGPtxF9etWVoOgylr842u6/YF3FHb2Ur5rBWAc3rOLHq7H7YPQFQBQ6CQlJduW83K3TA+PjDaJick3aYnCJjk5RWPe/q+sVqsGD75PQUHVzS4JJtiyZa8mf/ytJCkgwE/jxj1rckUoCM7hzsHd3VVT3x8iFxcXTZmxRPsPn7mlfurVrqgBfTuqUb3sf17cpkUdDX7wdh06ek7nwqOybfPwM1N1+Ur8Dc9v3HpYM2av1LSJQzSofyeVL1taH44ZqIefmXpLtQIoON6zix6ux+2H2Y4BAIWOp6eHbTklJfWm7ZOTM9qUKOFxk5YobKZP/1nHj4epUqWyGvb8Q2aXAxMcOXJaLzz/nlJT0+Tp6aFPp7yqgIDSZpeFAuAc7hxeHnaf6tWppNNhEXp/ysJb6qN96yCt+OVt9ereXGfDo/T4yOmq1eoFla4zVEFtR2rUW98oPiFZ/7q/rdb8OlYN6lbOtp/sAtdMqalpGvbq1zp87Kwk6f6erVSxvP8t1QugYHjPLpq4HrcfQlcAQKFTsuTVn6PGxyfk0jJDQkLGT1K9vUvYrSYY7/ixMM2YnjEf2FtvPcn+K4bCQs/r8aFjdPlyrFxdXTR58ktq3bqx2WWhgDiHF35BtStq9LP3SpJeGved4hPyP8rYw8NNM//zrEr7ltT5C9Hq0me85i7cqAsRV5Samqaz56P0xXcr1fPf7ykhMVmVKvhr+sdP3lK9aWnp+mbuWtvjjsH1bqkfALeO9+yiietx+2J6AQBAoePp6aHSpX0UHR2j8+cjc217+XKsbR7AChUCHVEeDDLrm0VKSUlV1arllZCYpD/+WHdDmyNHTtuWN2/ao4iIaElSly6tuSh0cuHhkRoyZIwuXLgki8WiCe8N153d2ppdFgzAObzwe/7xu+Tp6a7jpy7I28tD/e8LvqFNw6Cr0wXc3q6BypfNuNHv4uX/KD4hWd1vb6LKFctIkv43a5kuXLyc7bYOHDmjH3/ZqCED7lCLpjXVuEFV7T0Qmu+aDx45a1uuVIGRroAj8Z5ddHE9bl+ErgCAQqlOnWratm2fTp8+p9TUNLm5uWbb7vjxMNty7dpVHVUeDJCcnCJJCg0N1+gXP75p+88//8m2vHzFdC7ynFjUpSt6fOgYhYaelyS99fZT6t27q8lVwUicwwu3zHl0a1Uvp1lTn7tp+9dG9LYtN+w4WqfDIlSvTiXbczv3ncp1/Z17T9qW69WueEuhq9Vqzfc6AAqO9+yijetx+2J6AQBAodSyZUNJUnx8ovbtO5pju61b99iWW7RoYPe6ABRMTEycHn9irI4ezQhdRo8erIEDe5lcFYzGObzoS01Nty27ueb+sdL9mtD92vXyo/4188GeC4++pT4A5A/v2UDBMNIVAFAodevWVtOnz5MkzZ+/XLfdduP8benp6Vq4cJUkyde3pIKDmzq0RhTMxIkjNHHiiFzbTJ36gz6bNleS9M234xUc3MQRpcFOEhKS9PRTIdq/75gk6Zln/q0nn+pnclWwB87hhdszL32pZ176Mtc2b4zsrTdG9pEk3f3Q+1q36WCW10+FXrQtt29TT3+u3JVjXx2D69uWT16zXl65urro0X93sj3esOVQvvsAkD+8ZxcPXI/bFyNdAQCFUtOmQWrVqpEkaf78Zfrnn4M3tPn664U6dizjm/dHH71f7u58lwgUVsnJKXr++fe0Y8cBSdKjj96nkaMGmVwV7IVzeNG3euN+xcUnSZKeGNhVjepVybZd9zua6r67WkqSzpy7pN37T2d5vXO7+vLz9c5xO25urvrsg6G2ka5/LPtHZ85dMuJPAJAD3rMBY3BlA6eXOV9YpqioK7blU6fOacGC5Vna9+3bzWG1wXjs7+LlzTef1IABrygxMVlDh47RM8/8S8HBTZSYmKzFi9dq7tylkqQaNSpryJDe5hYLIFejR3+kDev/kSS1bdtU/fp31+HDOc8D6e7uppo1K+f4Ogo/zuFF2+Ur8Zr839/19uh+8vXx0vL5b+l/3yzXqvV7FXU5XuUCfXVv9xZ67KHb5fr/0w+M+WDeDXOzPtyvo+Z+0UqLl/+jdZsO6sjx87oSm6BS3p5q3qSGhgzoogZBGeeCCxcv65V3vnP434qruBYvHnjPBoxB6Aqn9/PPf+mXX1Zm+9qOHQds385l4o3fubG/i5eGDWvrk09e1csvf6zY2HhNnvztDW1q1KisGTPGqFSpnEfJADDfsr/+ti1v2rRbD9w/PNf2lSqX08qVuf/8GYUb5/Ci74Opi+RfupSeG9JdPqW89PKw+/TysPtuaJecnKpxk37W3IUbs+3Hp5SXHuzdXg/2bp/jtvYeCNVjL3yuU2ERhtWP/ONavHjgPRswBqErAKBQ69q1jRYtmqpvv12k1au3KTw8Qu7ubqpWraJ69uyoQYN6ycuLu2YCQGHEObzoe238HP34y0Y99tDtateqrqpWDpS3l4di4xN1/OQFrd98UF/PWaWjJ8KzXf+T//6h3ftPK7hFHdWvU0mBAT7y9yulpOQUXYi4on/2nNDCxVu1aOl2padbs+0DAIDCyGK9/vcdKOIOm10A7Cbousfs66KLfV18ZN3XVh3IoR2cnUVZ79puFTeJKcosuv6mUpzHi66s5/FSNQabVAfsLfbkN9c9w3FddF1/fcZ7dlF1/fs11+JF2/XX40bgRloAAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwkMVqtVrNLgIAAAAAAAAAigpGugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCA3swuAox02uwDYTVCWR+nW/SbVAXtzsTS87hmO66Ir6LrH7OuiK+u+Tkn/x6Q64AjuLs2zPLbqkEmVwN4sqnfdM5zHi66s5/Fy9UebVAfs7cLBj7M85hxedF1/DrfqgEmVwBEsamB4n4x0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIHczC7AWcyZM8eh2/Pz81OvXr0cuk0AAAAAAAAABUfomkeDBg2SxWJx2Pbq1atH6AoAAAAAAAA4IULXfAgICNCwYcPsug2r1aqQkBC7bgMAAAAAAACA/RC65kNgYKDGjh1r9+0QugIAAAAAAADOixtpAQAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwEBuZheAggkLC8tTuypVqti5EgAAAAAAAAASoWu+REREKCQkxOwysqhatWqe2lmtVjtXAgAAAAAAAEAidM2XiIgIjRs3zuwyAAAAAAAAABRihK55NHPmTIduz8/PL0/tQkND7VwJAAAAAAAAgPwgdM2jwYMHm11CtpirFQAAAAAAAChcCF3zaM6cOQ7dnp+fn3r16uXQbQIAAAAAAAAoOELXPBo0aJAsFovDtlevXj1CVwAAAAAAAMAJEbrmQ0BAgIYNG2bXbVitVoWEhNh1GwAAAAAAAADsh9A1HwIDAzV27Fi7b4fQFQAAAAAAAHBeLmYXAAAAAAAAAABFCaErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAO5mV0AYKQzZy5o9uzftHr1Vp0/HyEPD3dVrVpBd9/dSQMH3iMvrxJmlwgDnT17UfN/Xq41a7br7NmLiotLUJkyvqpcuZzaBDdWz54dFBRU3ewycYsiI6O1e/dh7d59WHv2HNGePUcUHR0jSerTp6smThxlcoWwB87jzisy8rL27D6qvXuOae/eY9q757jtmH2gd2dNeP+5PPd15swFzf1hmTb9vVehoeFKSEiSd8kSqlmzkjp2bKZ/P9RNAQF+9vpTUECxsfFas2ab9uw5or17j+pCeKQuXbqipKRk+fiUVO06VXV755bq17+7/P19zS4XBuIc7nzeHt1LLzzZ1fa496Ofa+OWYzddr3O7uup/f0sFt6ipcmV9lJaWrouRsdp/6KzW/X1E8xZtV1x8cp7r6Nqpvn784knb40nTlmrStL/y98fAMJzHi5f69XrnqV3rNo00e/YE+xZTxBC6oshYuXKLXn75Y8XGxtueS0hI0uXLR7V371HNm/eXZswYo+rVK5lYJYzy3ew/9Mkn3yk+PjHL8+fPR+r8+Uht335AsbEJeuONx02qEAXVvv0jZpcAB+M87txu7/i0If0s+nWtQsZ9qcTErB/Wr1yO066dR7Rr5xF9N3uJJn08XO07NDVkmzDW7t2HNfrFj7J97dKly7q05bK2btmrr776RR9OelGdOrVwcIWwB87hzqdx/Up65rHb87WOn6+X/vPeQ7q7W+MbXvP18VLtGmV13123advOU9p78Gye+vT28tCH4/rlqw7YF+dxwBiErigS9u8/plGjPlBiYrK8vb309NP9FRzcVImJSVq8eJ1++mmpTp48o6eeCtH8+ZNVqpS32SWjAP7733n6z5Q5kqQaNSrpX//qrsZN6sjHp6Sio2N0YP9xLV++WS4Wi8mVwiiVKpVVrVpVtH79P2aXAjvhPF60VKwYqJq1Kmnjht35Wm/HjkN6643/Kj3dKhcXi+7vfbu6dm2lsuX8df5chH5duFarV23X5cuxGv78R/pl0SRVrVreTn8FCqJixUC1CW6iRo3qqGLFQJUt66/0dKvCz0dq6dINWrbsb0VFXdFzz76reT9/rPr1a5pdMgqAc7jzsVgs+ijkX3J3d9XFiBiVDfS56To+pUpo3tdPq1njqpKkP/7ard/+2q2TpyOVlp6uyhVKq13r2rq3R/6+EHttRE9Vq1wmz3XAMTiPFz8DBvTUgIfvzvF1b36tkG+ErigSJkz4QomJyXJzc9XXX4eoefP6ttfatbtN1atX0qRJM3Xy5BnNnLlQL7zwsInVoiD+/nu3LXB94IE7NP7dYXJ3z3oqa9euqYY+3lvJySlmlAiDDBv2kJo0qasmTeoqMNBfYWHhuvPOJ8wuC3bCedz5PfNcPzVuXEuNm9RWYGBpnTlzQXd1G56vPr6csVDp6VZJ0htvDtFDD/ewvdakSW117xGsSR/M1jez/lBiYrK+nfWH3nx7qKF/BwouOLiJVq3+OsfX776no5Yv36Tnh72nlJRUfTbtB02d9oYDK4TROIc7nycf6agWTavp8LFwLV6+RyOf7nbTdd5/q4+aNa6qxKQUPTlytpau2pfl9V17w7R4+V69/f6vcnXN2+1jmjaqoicGdVRiUore+3SJPnn337f098BYnMeLpzIBfkzPZzBupAWnt3v3YW3blvGG369f9ywXeZmGDu2t2rUzvpH99ttFSklJdWiNMEZ6erreGfc/SVL9+jX07oTnbwhcr+Xh4e6o0mAHw4cPVJcubRQY6G92KbAzzuNFw/Mv/Et3dGmpwMDSt9zHzp2HJUmlS/tkCVyv9cxzV3+CumvnkVveFuzH1dX1pm26dWurmjUrS5K2bdtv75JgR5zDnU/liqX12oiekqSXx/2slJS0m64T3KKm/t27lSRp4pQ/bwhcr5eWln7TPl1cLJoc8i+5ublqyvQVOnE6Ig/VwxE4jwPGIHSF01u+fJNtuV+/7L+hdXFxUe/eXSRJV67EafPm/P3cEYXDhg07derUOUnSE0/0lZvbzS8GABR+nMeRKTOIqVylbI5tfHy85e/vk6U9nFPJkl6SpKQkfpnizDiHO5+JY/qqVMkS+vGXrfp76/E8rTN0YAdJ0uUrCfrqu/WG1PHMY7eraaMqOnrigqZ+sdKQPuFYnMeB3DG9QD5EREQoJCTE7DJwne3bM75V8/YuoUaN6uTYrnXrJrblHTsOqGNHJvt2Nn/+uVFSxhxUd9zRyvZ8dHSMoqNjVLq0j0qXZh4owNlwHkemmjUqaf/+EzoTdjHHNrGx8YqKipEk1ahZ0VGlwWDHj4fp4METkqRatSqbXA0KgnO4c7m/5226q0sjXYqO07gPfsvTOu7urup5Z8aNs9ZsPKyk5IwvvFxcLKpQzk+urhZduBhjez4vqlb218vPZ/yi4ZVx85Wch9G2KFw4jwM3R+iaDxERERo3bpzZZeA6x46FSpKqVauY68jHWrWq3LAOnMuuXRk/O61cuZxKlvLS77+t1YwZ83XkyGlbm8wbaw16pBfTCwBOgvM4Mv37wW4aN/YLRUfHaO6Py/TgQ91vaPO//y64pv2Nr6PwSkhIUnh4pFat2qKvvlyg1NSMkGXw4PtNrgwFwTncefj6lNCEN3pLksZ/9IcuRcflab1G9SrJq0TGdfWBw+dUqqSnXh3eUw/2bqXSfhk3RUtKTtWmrcf1yfTl2rjl2E37/HBsP5X09tTPi7Zr/eajt/YHweE4jxdtS//cqD+XbNCZMxfk4uKismX91ax5ffXp01Vt2za5eQe4AaFrHs2cOdOh2/Pz83Po9pxVUlKyoqKuSJIqVAjIta2fXyl5e5dQfHyizp9nviBnk56erhPHz0iS/P199N6ELzV79h83tDt58qwmTfpGy5dv1v+mvyVf35KOLhVAPnAex7X69OuiHTsOadGvazVh/Nfav++EunRtqcCypXXubKR+W7ROK1dslSQ99XQftWvPB4DCbsGCFXrj9Sk5vv7kU/107323O7AiGIlzuHMZ8/K9Kl/OV5u3n9D3P2/O83r16pS3Lbu4WLRs/ijVrpF1GhhPDzfd3iFIndrV0YTJizX1y1U59tf33ua6s3MDRV+O15iJi/L/h8ChOI8XH0ePZv1C7NSpczp16px+XbhK3boF6/2Jw+Xjw+fr/CB0zaPBgwebXQKyEReXYFv29va6aXsvr4wLvfj4RHuWBTuIiYlXenrGhPyHD5/Wnj1HVbasv15+ZbA6d24pT0937dlzVB9/9K127Tqsf/45qDffnKqpU18zuXIAueE8jmu5urrovYnP6Y4uLfTF9IWa//NKzf856zx/bYIb6cmnehO4OrkGDWoqJOR5NWla1+xSUACcw51HcMuaGtQ/WCkpaXp53M/5WjdzNKskPf9EV3mVcNeKtQf0wX+Wav+hs/IpVUL39miqt0b3kp+vl95+6V4dOX5Bf6688WZbpf28NP61ByRJEyYvVsSl2IL9YTAN5/Giw8vLU126tlG7dk1Vq2ZleZcsoUuXrmjrln368cc/FR0do+XLN+vyc+/p66/fyfVm1siK/6fg1JKSkm3LeTnwPTwy2iQmJt+kJQqbhISrF+dJScny8vLUN9+MV81r5g9q3bqRZn0TogEPvaaDB09q+bLN2rXrsG67LciMkgHkAedxXO/YsTNa9Os6HTmS/c+Pd+08rAXzV6lW7coqX76Mg6tDfnXrFqzGjadKkpISk3U69Jz+XLJey5Zt0ujRk/T6G0+qS5fWJleJW8U53Dm4u7vq45B/ycXFRZ9/vUoHj5zP1/reXh62Za8S7lq94ZAGPvOV0tOtkqTIqDh9M/dvHTxyXgtnPydXVxe9+eI92Yau4165X2UDfbRt5yl9+9OmG15H4cN5vOhbs/Yr+fqWuuH5Dh2aadAjvfTUkyHav/+4tm7Zpx9++FOPPnqvCVU6JxezCwAKwtPz6gVAXu5gnPz/k7uXKOFxk5YobK7d15LUv3+3LIFrphIlPDVi5EDb4yWLjbm7KgD74DyOa23fdkCDBryt1au2q1w5f73/wTCtXvc//bP7Oy1f9ZneenuoSpTw1JLFGzXg32/qaA7BLAoPX99SCgqqrqCg6mrStK569eqsqdPe0AcfjFJoaLiGPTdBCxasMLtM3CLO4c5h5NN3Kqh2eYWeuaSPPvsr3+tff4OskI/+sAWu19q844T+WLZHklSvTgU1DMp6s8P2bWrr4X5tlJqaplfG/Syr9cY+UPhwHi/6sgtcMwUGltaU/7xi+2Lt++9unOIPOSN0hVMrWfLqz5ji4xNyaZkhc7Skt3cJu9UE+7h2X0tS+w7Ncmzbrl1T240c9u5lYn6gMOM8jkzJySl65aWpiomJV2Bgac358V3dd38nBQaWlru7mypUCNBDD/fQN7PHytPTXRcuROmN1/9rdtm4RQ/07qKePTsoPT1d746frujoGLNLwi3gHF741alZTsOfulOS9Ma7CxWfkP9RxrFxV39xdjEyRnsPnMmx7ar1h2zLzZpUtS17uLvqo3f6S5K+/G699h48m+86ULhwHi8+qlatoPbtb5OUMc9rePglkytyHkwvAKfm6emh0qV9FB0do/PnI3Nte/lyrG3+qAoVAh1RHgzk4eGuMmV8delSxs0aKlbMeR96enqotL+vIi5G2doDKJw4jyPT+nW7bBfxDw+6S4FlS2fbrk7dqrr3vk6a//NK7d93XAcPnlL9+tUdWCmM0vXOYC1Zsl7x8Ylat26H7uNGLE6Hc3jh98xjneXp4aaTpyPk5eWu3vc0u6FN/boVbMudguuoXKCPJOmvVfsVn5CsM+eiba+fO3851+2dPX+1bUCZq6PnevVoqjo1yyk5OVWHjoZnW0e92ldv2FW/bgVbmx27Tuv0GUKewojzePFRu3ZVrVmzXZJ0ITySKZ7yiNAVTq9OnWratm2fTp8+p9TUNNsIx+sdPx5mW65du2q2bVC41alTTVu27JUkpaWl59o2PS1NkuTqxoB+oLDjPA5JOn786siphg1r5tq2YaOamv//94E5cfwMoauTKlPG17Z89uwFEytBQXAOL9wy59GtUS1QMyY/ctP2o4f1sC23vPNdxZ9J1qGj4bbnXF1zv7Z2cbHYlq+9Xs+sw8PDTZ+8+++b1nHfXbfpvrsyRta98PqPOv0LoWthxHm8+LBYbt4GNyKNgNNr2bKhJCk+PlH79uX8U/KtW/fYllu0aGD3umC8Vq0a2pbDQsNzbBcbG6+oqIyft5QvF2D3ugAUDOdxSFk/yKempuXa9trXcwp4UPhd+/PEvNz5HoUT5/CiL+xslEL/f6Rp1cr+ubatUe3qKOZz4bmPioXz4zxefBw9dvWLs3KMcs0zRrrC6XXr1lbTp8+TJM2fv1y33Vbvhjbp6elauHCVJMnXt6SCg5s6tEYYo8dd7fT55z9JkpYv36Qed7XLtt3yZZtsE/O3vCaoBVA4cR6HJFWpUs62vGP7Qd3RpWWObbdt3W9brly5XI7tULgt/XODbTkoiNHKzopzeOE2/PUfNfz1H3Nt8/LzPfTy83dJkno/+rk2bjl2Q5s/lu3RM4/dLl8fL3VuV1dr/z6SbV+9ujexLW/efsK2PPeXrZr7y9Zc62jfprYWfvucJGnStKWaNC3/N/2CY3EeLx7CQsO1ccNOSVK1ahVUvjwDm/KKka5wek2bBqlVq0aSpPnzl+mffw7e0Obrrxfq2LGMOxw/+uj9tjvvwbnUq1dDnTq3kCT98cd6/f337hvaXLwYpSlT5kiS3N3d1LdvV4fWCCD/OI9DkoLbNpaXl6ckae6Py3X48Ols261b+49WLM/44F6+fBnVb8CHvMJmwYIVSkrK/WY9s2b9qjVrtkmSqlQpn+XXLHAunMOLh+nfrFVCYookKeS1+1WqpOcNbfrf10Idg+tIkv5avT/L/K5wLpzHi4+VK7fk+gujiIhoDR/+gVJSUiVJAx6+21GlFQm826FIePPNJzVgwCtKTEzW0KFj9Mwz/1JwcBMlJiZr8eK1mjt3qSSpRo3KGjKkt7nFokBef32odu08pCtX4vTsMxP06KP3qvPtLVXC00O79xzRFzPm227kMHzEw3wL58Qy54fLFBV19aZop06d04IFy7O079u3m8Nqg/E4jzu/HdsP6vTp87bHmdO8SNLp0+Fa+MvqLO1797kjy2Nf35J6/In7NW3qPMXFJWjQgDF6eNBdat++qXx9Syoy8rJWrtim+T+vVHp6xq8ZRr44QC4ujCEobKZN+0EffPC1evRop5YtG6pa1QryLumluNgEHT58Ur/9tkY7dhyQlPEFacj4YXJ1ZZoIZ8Y5vOg7cy5aH/7nT4195T41rFdJS+eN1NQvV2r/oXPyKeWpXt2b6rGHMn6FdiUmQW+//6vJFaMgOI8XH++++4VSU/6nHne1U7Nm9VS5cjmVKOGhqKgYbdm8V3PnLrV9DmvZsoEGDrzH5Iqdi8Wa+RtcFBOHzS7Ablau3KKXX/5YsbHx2b5eo0ZlzZgxRtWrV3JwZY4SlOVRunV/Du2c3/bt+zVyxCRFRERn+7rFYtHTz/TXiBEPO7YwB3GxXP8tctE8rl977RP98svKPLc/dOg3O1ZjlqDrHhfNfZ2peJ/Hs+7rlPR/TKrj1r35+uf6deHaPLffe+DGn7tarVZ9OPFbfTf7T+V2ierm7qoRIx/SkKH33VKtZnN3aZ7lsVWHTKrEPrp2fUJnz9z8hioVKgRqwnsvqEOH5jdt66wsuv6n9kX3PF68z+HS9efxcvVHm1RH/uVleoFMb754j154okuOX3hdjIjR4OdnatvOU/muw1mmF7hw8OMsj4vaOVziPJ7p+nO4VQdMqsR+unZ9UmfPXLxpux53tdO77w6Tr28pB1RlDouMn2+cka4oMrp2baNFi6bq228XafXqbQoPj5C7u5uqVauonj07atCgXvLyKmF2mTBAy5YNtei3Kfr+u8VasWKzwsIuKCUlVWXL+qtNm0YaOKiXGjasZXaZAPKJ8zgsFotefX2w7r2/k+bPW6l/dhzS2bMRSkxMkrd3CVWtVkGtWzfQv/59p2rULKrBjfP78stxWrNmm3bsOKDTp84pMjJa0dEx8vT0UECAn+o3qKU77mitu+/uaJtSAs6Pc3jxMGHyYi1duU+PPdRewa1qqnxZXyUlperYyYtaunKfvvxuvWJiE80uEwXEebz4mDhxhLZu2aedOw8pNPS8oqJjFBcbL2/vEqpQIVDNm9dX7z5d1Lx5fbNLdUqMdC12iu636yg+I12Lu+Iy0hVScRvpWrw5/0hX5F1RH+mKq4rTSFc470hX5E9xGOmKDMVhpCuussdIVybBAgAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEsVqvVanYRAAAAAAAAAFBUMNIVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADuZldABztsNkFwG6Csjyy6pBJdcDeLKp33TMc10VX0HWP2ddFF/u6eGF/Fx9cnxUXXJ8VJ1mPa69qA0yqA/aWcPqH657huC7arr8+KzhGugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAOD/2rvv+Cjq/I/j700lCRAgAUKvEiSEXgQ9pYsiAlJU4OBARaUpcp71ByGUw0NRTxTBAiKiIiCI3iFSBaQXCUWqgSRASEICCenJ/v7IsRBSSJnNZrOv5+PBw5md78z3s/m6O5t3Zr8DAABgIEJXAAAAAAAAADCQi60LsBfLli0r0f68vb3Vp0+fEu0TAAAAAAAAQPERuhbQ8OHDZTKZSqw/f39/QlcAAAAAAADADhG6FoKPj4/GjRtn1T7MZrOCg4Ot2gcAAAAAAAAA6yF0LQRfX19NnTrV6v0QugIAAAAAAAD2ixtpAQAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBXGxdAIonPDy8QO1q165t5UoAAAAAAAAASISudq9OnToFamc2m61cCQAAAAAAAACJ0LVQoqOjFRwcbOsyAAAAAAAAAJRihK6FEB0draCgIFuXkU1YWJitSwAAAAAAAABwC0LXAlq0aFGJ9uft7V2gdszVCgAAAAAAAJQuhK4FNHLkSFuXAAAAAAAAAMAOELoW0LJly0q0P29vb/Xp06dE+wQAAAAAAABQfISuBTR8+HCZTKYS68/f35/QFQAAAAAAALBDhK6F4OPjo3Hjxlm1D7PZrODgYKv2AQAAAAAAAMB6CF0LwdfXV1OnTrV6P4SuAAAAAAAAgP1ysnUBAAAAAAAAAFCWELoCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgbqQFuxcTE6fDh0/q8OGTCgk5pZCQU4qLi5ckDRjQTbNnT7JxhTBSSMgp/bp1v/YfOKYzp8N05cpVubq6qGq1KmrT5m4NGthTbds1s3WZMFhExGV9+eVabdmyV5cuRcvNzVV16vjpoYf+omHDHpaHRzlblwiDMNZlG+dsx8FYO46EhERt3bpPISGndOTIaV2OjNGVK9eUkpKqChW81KhxHT1wf1sNHNRTlStXtHW5MBDnbPsz47UnNfn5Ry3rvYYEa9uu43m2r1enqsaN6q1ufwlU3Vq+cnIy6WJkrDZuO6IFS9br+MnwfPtzc3NRq4D6atuykdq1aqR2LRupcQM/OTllXf/nUfdJY54YioVztvUQusLude78V1uXgBIyfNir2rfvWI7H09LSdS70gs6FXtD3qzaqX/+umj59vNzcXG1QJYy2adMevfzyO0pISLQ8lpSUoqtXT+vIkdP67rv1WrhwiurVq2nDKmEExrrs45ztOBhrx3H48ElNfuntXLdduXJVV/Zc1d49R/TZZ9/rX3Ne0l/+0qaEK4Q1cM62Py2a1dPEpx8ucPvRQ7tp7rS/yd09++9UjRvUUOMGNfS3x7vo1RlL9fEX6/M8xgezntKIIV2KWjJKCOds6yF0RZlSs2ZVNWxYW9u3H7R1KbCCy5evSJKqVaui3r3vVdt2AapZo6oyMjN06NAJLfp8tSIjY7Rm9Walp2fonXf+buOKUVzHjp3RpElvKTk5VZ6eHnr22UHq2LGFkpNT9J//bNPy5T8rNDRCY8YEa+XKuSpf3tPWJaOIGGvHwznbcTDWZV+NGr7q0DFQAQGNVaOGr6pWrazMTLMiL8Xo55936Jdfdio29prGPj9D3614R02bNrB1ySgGztn2x2Qy6cPZT8vV1UWRUVdVvap3vu0H9+2kD2c/I0mKu3pd73/yk7b+dlQpqelqGVBfLz33iBo3qKF3po1UVMw1rfxxV5793nAtPlGHjoTqrkY1VKNaZeOeHAzFOdtYhK6we+PGPaHAwLsUGHiXfH0rKzw8Ut27P23rsmAFDRrW1qRJI9TrwU5ydnbOtq1Vq6bq92hXPfnkKwoNjdBPP/6qJ57orfbtm9uoWhhh5sxPlJycKhcXZ33+ebBat25q2dapU0vVq1dTc+YsUmhohBYtWq0JE4basFoUB2PtGDhnOw7G2nF07BiozVs+z3P7Qw/fpw0bdmn8uFlKS0vXh/O+1gfzXi/BCmE0ztn2Z9zo3mrXqrH+OBWhH37eq3+M759nW49ybpoTNFKSFJ+QpO4Dg3TslmkEDhw+qxVrd2rjyiAF3l1XbweN1LpNB3U9MSXHsdZvOaRfdx7T/sNn9cepCJnNZv387f8RupYynLOthxtpwe5NnDhMXbt2kK8vb9xl3YIFU/TQw/flCFxvqFylol55dbRl/eeffyup0mAFhw+f1L59RyVJAwf2zPaB/obRo/urUaM6kqQlS35QWlp6idYIYzDWjoNztuNgrB1HXp/LbtWjxz1q0KCWJOU6VRTsB+ds+1Onpo+mTB4sSZrw+mdKvcN49O7WynIl7Iefr8sWuN4Qn5CkV6Z/KUnyq1ZJfx38QK7HWrF2l5au+FXHT4bLbDYX52nAijhnWw+hK4AypWPHQMty2PlLNqwExbVhw82vKQ0c2CPXNk5OTurfv6sk6dq169q9+3CJ1AZjMdYAUPZ5eXlIklJS0mxcCYqDc7b9eXfGKFUo76Evv9uq7bvzvmnWDW1aNLQsr99yKM92v+48pqTkVEnSgIc7FrtOoCwidAVQpqSm3vwgf+OumLBP+/dnXQnj6VlOAQGN82zXvv3NoP3AgTt/kETpw1gDQNl29my4/vjjT0lSw4a1bFwNioNztn0Z+Mg96tOjrWJi4/XajK8KtE+VyhUsy5FRV/Nsl5GRqdi4BElSxzZ3ydmZ372A2zGnayFER0crODjY1mUAyMfevUcsy40a1bZhJSiuM2fCJEl169aQi0veX11s2PDmON/YB/aFsQaAsicpKUWRkTHavHmPPvt0ldLTMyRJI0c+auPKUBycs+2Hd0VPzQkaIUl6859fKyY2vkD7Xb+enO0Y+alQPusKdnd3VzWq76eTZy4UsVqgbCJ0LYTo6GgFBQXZugwAecjMzNQnC1da1ns/dJ8Nq0FxpKSkKjb2miTJz88n37be3uXl6VlOiYnJunQpuiTKg4EYawAoO1at2qjXX3s/z+3PjBmoR/rmPvcjSj/O2fZl5utDVaNaZf229w8t/mZzgff743SEZfkvHe/WwZA/c23Xqnl9S+gqZc0dS+gKZEfoWkCLFi0q0f68vb1LtD+gLFi8eI0OHz4pSerZq5OaN8/7K08o3a5fT7Ise3p65NMyi4dH1of6xMTkO7ZF6cJYA0DZd/fdDRQcPF6BLe6ydSkoBs7Z9uPeDv4a9URXpaWla8JrnxVq3/WbDyktLV2uri6a+MzD+mrlthxXyZpMJgW9/Hi2x24NYAFkIXQtoJEjR9q6BAD52LPniOa+s0SS5OPjraCg521cEYojJSXVsuzqeudTlZtbVpvk5NQ7tERpw1gDQNnRo0dHNW/+gSQpJTlV58Muat1/t+uXX3Zp8uQ5eu31Z9S1a3sbV4mi4pxtH1xdnTXvn8/IyclJ7y38ScdOhhdq//CLV/Tp0o16ftSDqlXDR5tWBemNWcu0decxpaalq2Wzenpj0iD16tJSKSlpcnd3lSSVK+dmjacD2DVCVwB279Sp85owfpbS0zPk7u6m995/RT4+lWxdForB3f3mh7a0tPQ7tk9NzWrDhz37w1gDQNlRsWJ5VaxY3rIe2OIu9elzv9as3qxXX31P48bO1IyZE/TYY91tWCWKinO2ffjH+P5qelctnQ+P0sx3V955h1y8OnOp6tetpoe6t1aTRjX13Wd/z9Fm/+9ntO/3s3p2RE9JUkJCUo42gKPj9nIA7Fp42CU9NXqKrl5NkLOzk+bO/bvat29u67JQTF5eN7+elJh45w9wSUlZX1vz9CxntZpgHYw1AJR9/fp3Ve/e9yozM1Mzpi9QXFzBbuiD0oVzdunXpFFNvTy2nyTppalfKDEppUjHSU1N18DRc/T8Pxbq0JFQZWZmWrZFRl3V7H9/r+6DpslkurlP7NXrxaodKIu40hWA3YqMjNGoUVN0+fIVmUwmzZw1Ud173GPrsmAAd3c3VapUQXFx8bp0KSbftlevJljmCvPz8y2J8mAgxhoAHEO37h313/9uV2JisrZtO6C+3FDL7nDOLv0mPP2Q3N1ddfZcpDzLuWlw30452gT417Esd+kcIL+qlSRJP204kC2kNZvNWvzNZi3+ZrPKe5VTNV9vJSWn6tLlOJnNZklS4wZ+lvZ/nLp5Ay4AWQhdAdil2CvX9NToKQoLuyRJevP/xqh//242rgpGaty4rvbtO6rz5y8qPT1DLi7OubY7e/bmPFWNGtXJtQ1KN8YaAMq+KlUqWpYvXLhsw0pQHJyzSzd3t6z5VRvWq64lH068Y/vXXxxoWfbvPEHnw3O/MjbherISrme/IZqTk0ktmtWXJJ09F5njZlsAmF4AgB2Kj7+up56eqtOnwyRJkyeP1LBhfWxcFYzWtm0zSVJiYrKOHj2dZ7u9e0Msy23a3G31umA8xhoAyr7IyCuW5YLc+R6lE+ds3PBA5wD5VqkgSVqxdqeNqwFKJ0JXAHYlKSlFz44J1rGjZyRJzz03RM+MGXiHvWCPetwyVcTKlRtybZOZmanVqzdLkipW9FLHji1KpDYYi7EGgLLv53U7LMtNmtSzYSUoDs7ZpduYyR/Lo+6T+4CGaQAAM2hJREFU+f6b8e4KS/teQ4Itj58Pjy5UX29OyvodLDU1XZ9/vcnQ5wGUFYSuAOxGamqaxo+fpQMHjkuSRozoqxcnDbdxVbCWFi2aqF27AEnSypW/6ODBP3K0+fzz1TpzJuuK5xEjHpWrK7Pm2CPGGgDs16pVG5WSkppvm8WL12jr1n2SpNq1q6tdu2YlURqsgHO2Y6hSqbzc3HIfNycnk96dPkqd2zeVJM35aI3OhUWVZHmA3eDdD3bvxpxCN8TGXrMsnzt3UatWZf8L7GOP9Six2mCsyZPf1o7tByVJ99zTQgMH9dTJk+fybO/q6qIGDWqVVHmwgjfeeEZPPvkPJSenavToKXruucHq2DFQycmp+s9/ftW33/4sSapfv5ZGjepv22JRLIy1Y+Cc7TgYa8cxb97Xeuutz9WrVye1bdtMdev4ydPLQ9cTknTyZKjWrt1q+YO5q6uLgqePk7Nz7vOAwj5wzi77HujcTHODR2nF2p3atuuYwi7EqJy7q5o3ravRQ7urVfP6kqR1mw7qrQ++z/M41at6q+cDLXM8dsPwQfdn2/bb3hM6ey7SuCeCAuGcbT0m843bzsFBnLR1AYZ79dV39f33Bf86w4kTa61YjS01ybZm1gkb1WE9Tf0fLVT7mrWqadOmT61Uje2Y5H/bI2XvdX2rTZv26OWX31FCQmKu2+vXr6WFC6eoXr2aJVxZSWhy2zpjzVjbN87ZN5T98Wasbyj7n8+6dXtaFyLufGMsPz9fzZw1Qffe27oEqip5fD7LzpHO2R51n7RRHUXzxqSBenPSIElZ0wts23U8R5sBD3fQso8n5XmMzMxMLVm+VS+8+blSU9PzbPeXe+7W+uVTClzbMy/N19IVvxa4vbUlnf/6tkfK5uuac/YNt38+Kz6udAUAlGrdunXQDz98oCVLftCWLfsUGRktV1cX1a1bQ71736fhw/vIw6OcrcuEARhrALA/n34apK1b9+nAgeM6f+6iYmLiFBcXL3d3N/n4eKvp3Q3VpUt7PfTQffLwcLd1uTAI5+yybceeE3ptxlI90DlA/o1rqpqvtzIzzboYGautO4/py+VbtPfQGVuXCZR6XOnqcMrmX2YgOcKVFMjiaFdSOLayfzUcbmCsHQvj7Tj4fOYo+HzmSOz7SlcUnKNc6YobjL/SlRtpAQAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwEAms9lstnURAAAAAAAAAFBWcKUrAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGcrF1AShZZh23dQmwEpPuvu2RkzapAyWhyW3rjHXZlX2seQ8vu25/D88wH7FRJSgJzqbm2dZ5bZddt7+2M81HbVQJrM3JFJBt3awTNqoE1maSf7b19MzfbVQJrM3FqWW29VrNp9qoEpSEiCPTDD8mV7oCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgF1sXYC+WLVtWov15e3urT58+JdonAAAAAAAAgOIjdC2g4cOHy2QylVh//v7+hK4AAAAAAACAHSJ0LQQfHx+NGzfOqn2YzWYFBwdbtQ8AAAAAAAAA1kPoWgi+vr6aOnWq1fshdAUAAAAAAADsFzfSAgAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADudi6ABRPeHh4gdrVrl3bypUAAAAAAAAAkAhd7V6dOnUK1M5sNlu5EgAAAAAAAAASoWuhREdHKzg42NZlAAAAAAAAACjFCF0LITo6WkFBQbYuI5uwsDBblwAAAAAAAADgFoSuBbRo0aIS7c/b27tA7ZirFQAAAAAAAChdCF0LaOTIkbYuAQAAAAAAAIAdIHQtoGXLlpVof97e3urTp0+J9gkAAAAAAACg+AhdC2j48OEymUwl1p+/vz+hKwAAAAAAAGCHCF0LwcfHR+PGjbNqH2azWcHBwVbtAwAAAAAAAID1ELoWgq+vr6ZOnWr1fghdAQAAAAAAAPvlZOsCAAAAAAAAAKAsIXQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBA3EgLZdrbc77Qp59+b1n/Ysl0dewYaMOKYJSIiMv68su12rJlry5dipabm6vq1PHTQw/9RcOGPSwPj3K2LhEGYrwdE+/h9iUm5qpCDp9SSMgphYSc0ZGQ04qLi5ck9e/fRbNmTyjU8X799YC+W/6LjoSc1pUr11SlSkU1D2yswUN66v7721jjKcBATf37F6hd+w4B+vLLmdYtBiUiJSVVK1du1C/rd+nEiXNKSEhUpUoV1PTuBurXr4v69LnP1iXCACEhp/Tr1v3af+CYzpwO05UrV+Xq6qKq1aqoTZu7NWhgT7Vt18zWZeIOss7ZpxUSclpHjpzRkZAzlnN2v/4PaNY/x93xGN9/v0Vvvv5RgfqbMWusBgzoUoyKUVivT+qpcU/dfN8dNGqRdu4NzdFuSL9WenfmgAIdc9Ib32v5mkO5bvP0cFNgsxpqFVhLrZvXUsvmtVS3dmVJUlhErO558L3CPoUygdAVZdbx42e1ePEPti4DVrBp0x69/PI7SkhItDyWlJSiq1dP68iR0/ruu/VauHCK6tWracMqYRTG2zHxHm5//nLvaEOOk5mZqalTPtbKFRuzPR4ZeUWRkXu0ccMeDRrcQ0HTnpWTE1/aAkqDP89GaNy42frzz4hsj0dFxSoqKlbbfj2g71dt0vv/flleXh42qhLFNXzYq9q371iOx9PS0nUu9ILOhV7Q96s2ql//rpo+fbzc3FxtUCUK4v77nrF1CbCiAH8/jRnRqUT7/OLDoercoUGJ9mkPCF1RJmVmZmrK/81XenqGfHy8FRNz1dYlwSDHjp3RpElvKTk5VZ6eHnr22UHq2LGFkpNT9J//bNPy5T8rNDRCY8YEa+XKuSpf3tPWJaMYGG/HxHu4/atR01cNG9TSjh2/F3rf995dZglc727WQE891V916vop7PwlffbZah0/9qdWfLdBlStX1KSXhhldOgz25JO99eTQh/Lc7sk3FexeTEycnnpqmi5ejJYk9e7dWf36d1G1alV0+fIVrVm9RevW/aYdOw5p8ktz9fGCN2xcMYrq8uUrkqRq1aqod+971bZdgGrWqKqMzAwdOnRCiz5frcjIGK1ZvVnp6Rl6552/27hiFESNGr5q0LCWfivCOfuGhZ++oWpVK+e5vbqfT5GPjcIxmUx6K6ivXF2dFRWToKo+5Qu875Njlijycnye2y9GXsun45uLsXGJ+v3oBbVrVUflvdwL3H9ZROiKMunLJT8qJOSUGjasrR49O2rhgpW2LgkGmTnzEyUnp8rFxVmffx6s1q2bWrZ16tRS9erV1Jw5ixQaGqFFi1ZrwoShNqwWxcV4Oybew+3T82MHKzCwsZoHNpavbyVFhF9Wzx7PF+oYoX9e0OJFWVc4N2/eSEuWTle5clkf1gMDG6trt/Ya+df/05EjZ7To8zV6bGA31atXw/DnAuNU8fFWkyb1bF0GrOijD7+zBK7jxg3R+AlPWLY1a9ZQXbq0U8N/f6OPPlqurVv36+d1v+nB3p1tVS6KoUHD2po0aYR6PdhJzs7O2ba1atVU/R7tqieffEWhoRH66cdf9cQTvdW+fXMbVYv8PD92kJo3b6TmgY2yztkRl9Wrx/giH69+/RqqVauagRWiqJ4a1lGtA2vr1Nkordt4XBOeub/A+54NjVH4hbgi9bv6pxAtXb5Pvx+5oNCwrD/Q7Pr5RYcPXflOFsqcCxei9P77yyRJQdOek6srf1soKw4fPql9+45KkgYO7JktgLth9Oj+atSojiRpyZIflJaWXqI1wjiMt2PiPdx+TZj4hLp0bSdf30pFPsaSJT8qPT1DkvTGm09bAtcbPDzc9cabT0uS0tMztOSLH4vcF4Diy8jI0Nq1WyVJNWtW1fNjB+fabuy4wapR01eS9Mkn3+faBqXfggVT9NDD9+UIXG+oXKWiXnn15lQzP//8W0mVhkIaP2GIunRtW6xzNkqfmn7eenlCN0nSq8FrlZqWUWJ9f7Viv9b894glcEUWQleUOcHBC5SYmKz+A7qqQwf+slqWbNiwy7I8cGCPXNs4OTmpf/+ukqRr165r9+7DJVIbjMd4Oybewx2X2WzWpo17JUkNG9ZSy1ZNcm3XslUTNWiQNYfzpo17ZDabS6xGANmdO3dR8fFZc653vrdlnmGcs7OzOnduKUk6evSMwsMjS6xGlKxbb3gZdv6SDSsBHM+sN/uovJe7lq8+qF37ztm6HIjQFWXMf/+zXVs275N3pQp65R+jbF0ODLZ/f9bE/Z6e5RQQ0DjPdu3b3/ywd+DAcavXBetgvB0P7+GOLTw80jJfYLv2Afm2vbE9MvKKIiIuW702ALm7cbdzSfLxqZRvW99btud2MyaUDampaZZlbnYIlJy+DwaoZxd/xcYlKvjt9bYuB//Dd/YKITo6WsHBwbYuA3m4di1Bs2Z9Jkn6+99HqHKVijauCEY7cyZMklS3bg25uOR+JYUkNWxYO8c+sD+Mt2PhPRxnTodblhs2rJVv21u3nzkTrtq1q1utLhTPz+t+07r/7lBExGU5OTmpatXKatW6qQYM6KZ77gm88wFQqnl63rwRWkL89Xzb3rgiVsp63aJs2rv3iGW5UaPa+bREWfLG6/MV+ucFxcZdU3kvT9Wt66d7OgXqiSd7qXr1KrYur8yrWKGcpr2addPKme/+oti4xDvskbt3Z/RXw/o+qlLZUwkJKQo9f0Xbdp3Vkm/36lI+N9hC3ghdCyE6OlpBQUG2LgN5mDPnC0VFxapNm7s1aFDuX0WG/UpJSVVsbNbdEv3ucPdLb+/y8vQsp8TEZF26FF0S5cFgjLfj4T0clyJjLMvVq+f/uvfz872538WYfFrC1k6fzv7HsHPnLurcuYtas3qzevToqH/OnqgKFbxsVB2Kq27dGnJ1dVFaWvodr169dfvFC5yvy6LMzEx9svDmzS97P3SfDatBSdq756hlOS4uXnFx8Tp8+JS+WLxWr772Nw15vKcNqyv73nipp6pXraA9B87p65UHinyczh0aWJarVHZRlcpeatOyjsaM7Kygt9Zp6Xf7jCjXoRC6FtCiRYtKtD9vb+8S7c/e7dt3VCu+2yAXF2cFTXtOJpPJ1iXBYNevJ1mWPT097tjewyMrhEtMTLZmWbASxtux8B4O6bbXvVe5fFpKHp43b7DF67508vBwV9duHdSpUws1bFBLnl7ldOXKNe3dc1TffLNOcXHx2rBht66OnaXPP5/GTfPslKdnOXXs2Fzbtx/SiRPn9NOP29Tnkb/kaPfTj9t08uTN+QVvfb2j7Fi8eI0OHz4pSerZq5OaN897eiiUDXXqVFePnh3UsmUT+dXI+oNpeNhl/fLLLq3/ebdSUtI0LegTyWTSkCH8Ud0aOrSpq6ED2ygtLUOvBhftBqOhYVf03w3Htf/3MF24dFWSVK92ZT3co5n69Gomj3KuemtqX5nNZn21Yr+R5Zd5fLopoJEjR9q6BOQhNTVNU/5vvsxms0aO7KsmTerZuiRYQUpKqmW5IL+YublltUlOTr1DS5RGjLfj4D0cN6Sm3JwH8E6vezc3V8vyre8XKD22/vqZKlYsn+Pxe+9tpeF/7aMxzwTr2LGz2rvnqL7+ep1GjHjEBlXCCOPGP65du0KUnp6h1177QOfDLqlfvy6qWrWyoqJitWbNFs3/6DvLFbGSlMzrtszZs+eI5r6zRJLk4+OtoKDnbVwRrK1Hjw7q3/+BHH8sDwxsrIce7qwtm/frhRfeVnpahv41+wt17dpOVatWsk2xZZSri7P+FfSonJyc9PHi7TpxuvDz3P9343EtX3Mox+O/H7mgH9YdVY8HmuiT9x6Xm6uLgv7RW+s3n1BUTIIB1TsGZraG3VuwYIXOng1XzZpVNW78E7YuB1bi7u5mWb7xgT0/qalZbcqVc7tDS5RGjLfj4D0cN7i53wxS7/S6v/VGLbe+X6D0yC1wvcHXt5Le//c/LOH6V0t/KqmyYAWtWvkraNpzcnFxVlpauv79/tfq3u1ZtQgcou7dntW/3/9azs5OeuXVmzdI9LrD1eywL6dOndeE8bOUnp4hd3c3vff+K3e8sRrsX4UKnvl+O6lL17Z6/vlBkqSkpBStWrmppEpzGBPG/EV3Nayq8Atxmjt/S5GOEZ+Qku/2DVtP6r35WyVJnp5uenJgmyL146gIXWHXzp4J18IFWfMGvfnmM9km80fZ4uV18yvmiYl3/kpaUlLW1035f8I+Md6Ogfdw3Crb6/56/lMGJCXe/AWB/2/sU506furcuaWkrHleIyOv2LgiFMfAgd31zbez1aNnx2yvSRcXZ3Xr1l4rV72t5s0bWR73zieUh30JD7ukp0ZP0dWrCXJ2dtLcuX9X+/bNbV0WSonBQ3pYgtl9e/Of9xmF06iBr8Y/nTWdy5uz/qOkpLQ77FF0S1fsV2ZmpiTpnnZ8K60wmF4Adm3xFz8oLS1ddepUV1Jyin76aVuONqdOnbcs794VoujoOElS167t+UXNjri7u6lSpQqKi4vXpUv53zTl6tUEyxx/t95sBfaD8XYMvIfjVn633DwrMjL/1/2tN827MYcc7E+jRnW0dWvW3HCXI2O4w7WdCwhopA8+eEXp6RmKiopVWlq6qlevYrka/YcftlraNm5cx1ZlwkCRkTEaNWqKLl++IpPJpJmzJqp7j3tsXRZKER8fb1WqVF6xsfH8cc1gY/7aSe5uLgoNuyIPD1c9+lDOP3Y0bVzNsnxvhwaq6pv1B69ftpwoVEgbc+W6YuOS5FPFS37VKha/eAdC6Aq7duPrhWFhkZr80jt3bP/RR8styxs2LuAXdjvTuHFd7dt3VOfPX1R6eoZcXJxzbXf2bLhluVEjPtTbK8a77OM9HLdq1Li2Zfns2Yh82966vVGj2vm0RGnGPfPKJhcXZ9WokfOPoEePnrEsB7a4qyRLghXEXrmmp0ZPUVjYJUnSm/83Rv37d7NxVSiNuEGqdbi5Zf1uVL9OFc2fM/iO7Sc938Wy3LHXuwpPiitUf2azuVDtkYXpBQDYjbZtm0nKulP10aOn82y3d2+IZblNm7utXhesg/EGHEvt2tVVrVrWlY779h7Nt+3+fVlfUaxevYpq1aqWb1uUXqfP3PyjWTWuci3TMjIy9MsvuyRJNWr4qnVrfxtXhOKIj7+up56eqtOnwyRJkyeP1LBhfWxcFUqjK1euKTY2XpJUrVplG1eDoqpS2VNVKntKkiKj4m1cjX3hSlfYtdmzX9Ds2S/k2+aDD77Wh/O+lSR9sWS6OnYMLInSYAU9etyjBQu+kyStXLlBLVvm/MCemZmp1as3S5IqVvRSx44tSrRGGIfxLvt4D8etTCaTunVvr2++/llnz0bo90Mn1bJVkxztfj900nKla7fuHbiCxk6Fh0Xqtx2HJEl16/qpenWmiSjLVq7YqIsXsqYFGfJ4Lzk75/7tFZR+SUkpenZMsI7978rl554bomfGDLRxVSitvlu+wXKFZLv2zWxcTdky6c3VmvTm6nzbvDS2iyaP7SpJGjRqkXbuDS1SX8MHt5OTU9Y1m7uKeAxHxZWuAOxGixZN1K5dgCRp5cpfdPDgHznafP75ap05k/VX9xEjHrXcGRn2h/EGHM+IEY/I2Tnr4+nMGZ8qOTn7HXWTk1M0c8ankrK+wvzXEVxZVRpt2rRH6ekZeW6Pjo7TxIlvKS0tXZL05NCHSqo0WEl+8zDv2hWif/7zc0lS/fo1NWrUoyVVFgyWmpqm8eNn6cCB45KkESP66sVJw21cFWwhIuKyjh/7M982Wzbv1/yPVkiSypVz04DHupZEaSiE2jUrKaCpX75tejzQRC8+94AkKSkpVd+uPlgSpZUZ/HYKwK688cYzevLJfyg5OVWjR0/Rc88NVseOgUpOTtV//vOrvv32Z0lS/fq1NGpUf9sWi2JjvAH7sX//cZ0/d9GyfuPrhJJ0/vwlfb9qU7b2Ax7LOfdf/QY1NWp0P336yfc6cuSMhg19Q08/PUB16lRXWFikPv30e8sveaNG91P9+jWt9GxQHDNmfKL0tI/V68FOatXKX7VqVVO5cm6KjY3Xnt1H9O23Pys29pokqW3buzVs2MM2rhjF9WjfF9W+fYDuf6Ct7mpcR25urrpwMUobNuzWj2u3KTMzU97e5fXue5MtN9aC/Zk8+W3t2J4VuNxzTwsNHNRTJ0+ey7O9q6uLGjSoVVLloRD27/9D589fsqzH/e89WfrfOfv7LdnaDxjQJdt6RESURo2cplatmqhL17by96+nKj7ekrK+ybB+/S6t/3m35SrXv7/8V26WWArVqVVJKxaN0r5D5/XLlpM6duKSoq9clyTVq11ZfXo2U59ezSxXuU5/e70uXc59eoH6daqoQ5u62R7z8nSz/HdIv1bZtm3eflpRMQkGP6PSh9AVgF1p1qyR3n33Fb388jtKSEjU3LlLcrSpX7+WFi6covLlPW1QIYzEeAP2Y+V3G7R69ZZctx048IcOHMh+tXpuoaskvThpqK5cuapVKzfp+LE/NfmluTnaDBzUXS+8+GSxa4b1XL58RUu//ElLv/wpzza9HuykGTPGyc3NtQQrgzWkp2do48Y92rhxT67bG99VR3PmvKimTRuUcGUw0i/rd1qWd+06rH6PTsy3fc1a1bRp06fWLgtFsHLFRq1ZvTXXbQcPnNDBAyeyPXZ76HrDoUMndejQyTz78fBw1z9eHakhQ3oUtVSUgHat6qpdq7p5bk9MTFXQv9bpqxX782zToU1dvTtzQK7bqlT2yrFt0KhFhK4AUBp169ZBP/zwgZYs+UFbtuxTZGS0XF1dVLduDfXufZ+GD+8jDw/ual5WMN6AY3FyctKMmePUs9c9+m75LzoSckaxsddUuXJFNQ9spCGP99L997exdZnIx+zZL2jvnqM6dOiEwsIuKTYuXtcTEuXpWU5+fr5q3bqp+g/oqtatm9q6VBgkePpY/bbjkA6HnFLU5VglJiarSpWKauJfX70f7KS+jz7AFEBAGRIQ0FBv/WuCDh06qaNHzioqKlZxcfFKT89QRW8vNW5cR/fc01wDB3WXz/+ugEXpc/joBY1/ZYXatqyjlgE1Va1qBVWp5ClnFyddvZakk6ejtH33WS1beUAx/7sCFoVjMt+43hsOwazjti4BVmLS7Xdtz/svjrB3t99YhrEuu7KPNe/hZdft7+EZ5iM2qgQlwdnUPNs6r+2y6/bXdqb5qI0qgbU5mQKyrZt1Io+WsHcmZb+5a3rm7zaqBNbm4tQy23qt5lNtVAlKQsSRaYYfkxtpAQAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwEAms9lstnURAAAAAAAAAFBWcKUrAAAAAAAAABiI0BVlTnh4uEwmk0wmk8LDw21dDqyIsXYsjLfjYKwdB2PtOBhrx8FYOxbG23Ew1o6DsTYOoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGMhkNpvNti4CAAAAAAAAAMoKrnQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErAAAAAAAAABiI0BUAAAAAAAAADEToCgAAAAAAAAAGInQFAAAAAAAAAAMRugIAAAAAAACAgQhdAQAAAAAAAMBAhK4AAAAAAAAAYCBCVwAAAAAAAAAwEKErSp3FixfLZDIV69/SpUsNPxaMx1g7DsbacTDWjoXxdhyMteNgrB0HY+04GGvHwniXHi62LgDIi4+Pj3x9fQu1T3R0tGJiYqx6LBiPsXYcjLXjYKwdC+PtOBhrx8FYOw7G2nEw1o6F8bY9QleUWuPHj1dQUFCh9gkKCtK0adOseiwYj7F2HIy142CsHQvj7TgYa8fBWDsOxtpxMNaOhfG2PaYXAAAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABiJ0BQAAAAAAAAADEboCAAAAAAAAgIEIXQEAAAAAAADAQISuAAAAAAAAAGAgQlcAAAAAAAAAMBChKwAAAAAAAAAYiNAVAAAAAAAAAAxE6AoAAAAAAAAABnKxdQFAXqZNm6Zp06aVumPBeIy142CsHQdj7VgYb8fBWDsOxtpxMNaOg7F2LIy37RG6otTx9vaWv79/sY9h9LFgPMbacTDWjoOxdiyMt+NgrB0HY+04GGvHwVg7Fsa79DCZzWazrYsAAAAAAAAAgLKCOV0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAABgY0FBQTKZTJZ/tnRrHUFBQTatpSi2bNmS7Tls2bLF1iUBAAAHROgKAADgwEJDQ7MFVEb/q1+/vq2fIgAAAFDiCF0BAAAAAAAAwEAuti4AAAAAtmMymeTs7FygthkZGdnWC7KfiwsfNwEAAOB4+BQMAADgwOrVq6f09PQ7tgsNDVWDBg0s6w888ABzZQIAAAB5YHoBAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMxJyuAAAAKFEnT57U77//rosXLyohIUH169fX0KFDbV2WMjIytHfvXp06dUqXL19WRkaGqlatqqZNm6pDhw4FvuFYSTKbzTp58qSOHz+usLAwxcfHy93dXZUrV1bTpk3Vrl07ubm5Gdbf1atX9euvvyo8PFxXr16Vn5+fWrVqpVatWhX72HFxcdqxY4cuXLig6OhoeXl5qVq1aurUqZPq1atX/OIBAABKEKErAAAADBUUFKRp06ZZ1s1msyRpzZo1mj59uvbv35+tvbe3d7bQtUuXLtq6daukwt2wK69+7+TChQuaMWOGvvnmG8XGxubaplKlSnr22Wf1yiuvqHLlygU6rrUkJibqp59+0ooVK7Rp0yZFR0fn2dbDw0PDhg3Ta6+9poYNGxa5z+joaE2ePFnfffedkpKScmxv0qSJZs+erQEDBhT62Bs3btSMGTO0bds2ZWRk5NomMDBQb775pgYPHiyTyVToPgAAAEoa0wsAAADA6iZMmKD+/fvnCFxt7YsvvlDjxo01f/78PANXKesqzLfeeksBAQE2fw4LFy7UkCFDtHz58nwDV0lKSkrSp59+qpYtW2r16tVF6i8kJERt2rTRkiVLcg1cpayrlx977DE9//zzBQ67ExMTNXjwYPXo0UNbtmzJM3C9UcPjjz+uxx57TImJiUV6HgAAACWJK10BAABgVf/61780b948SVKFChXUo0cPNW7cWM7OzgoNDdXOnTttUtfs2bP12muvZXusUaNGuvfee1WzZk05OzsrLCxMmzZtUnh4uCTp4sWLeuCBB7Rr1y41b97cFmVnU6FCBbVs2VL+/v7y8fGRp6enrl+/rjNnzmjbtm2KioqSJCUkJGjIkCHavn27OnToUODjX7t2TQMGDFBYWJgkqVmzZurSpYuqVKmiyMhIrV+/XufOnbO0//jjj+Xh4aG5c+fme9yEhAR169ZNe/futTzm4uKie+65R61atVKVKlWUmJioI0eOaMuWLUpOTpYkrV69Wn379tX69etL5XQPAAAANxC6AgAAwKpef/11SdK4ceM0a9YsVaxYMdv21NTUEq9p3bp1lrokyd/fXx9++KG6d++eo216eroWLlyoyZMnKzk5WdevX9fgwYP1+++/GzpfakF5e3vr+eef17Bhw9SxY0e5uOT+kT4jI0NfffWVJkyYoGvXriktLU2jRo3SkSNHCvwV/Y8++kgpKSny9vbWZ599poEDB2bbbjabNX/+fL344otKS0uTJL377rvq27evunbtmudxn3nmmWyB68iRIzVz5kzVqlUrR9tLly5p/PjxWrlypSRp06ZNmjlzpqZMmVKg5wAAAGALTC8AAAAAq8rIyNDkyZM1b968HIGrpBIPLpOTkzVq1CjL1+DbtGmj3bt35xq4SllXYI4dO1YrVqywhJV//PGHli5dWmI132rUqFH66KOPdO+99+YZuEqSs7OzRowYoXXr1lmuCj127JjWr19f4L5SUlLk4uKiH3/8MUfgKkkmk0ljx47VokWLsj3+wgsv5HnMNWvW6JtvvrGsT58+XYsXL841cJUkPz8/rVixQo8//rjlsbfffltxcXEFfh4AAAAljdAVAAAAVlW/fn3NnDnT1mVYfPHFF7p06ZKkrGBy2bJl8vb2vuN+ffr00eDBgy3r8+fPt1qNRurUqZN69+5tWf/xxx8Ltf/48eN133335dtm2LBheuSRRyzrISEh2rFjR65t33rrLcvyfffdpzfeeKNAdXzwwQfy8vKSJMXHx+urr74q0H4AAAC2QOgKAAAAqxo9erTc3d1tXYbFkiVLLMsPPvig/P39C7zvE088YVk+cOCArl27Zmht1hIYGGhZ3r17d6H2nThxYoHa3X5166pVq3K0OXXqVLY5fCdOnFjgqQ6qVq2a7WrkzZs3F2g/AAAAW2BOVwAAAFhVly5dbF2CRWJiYra5RO+///5C7X/XXXdZljMzM3X48OE7XgVqTb///rtWrFihAwcO6MSJE4qLi1N8fLwyMjKytcvMzLQs37gpWEEEBASoQYMGBWrbrVs3lS9fXgkJCZJyD3e3bt2abb04P/9Dhw4Val8AAICSROgKAAAAq2ratKmtS7A4cuSI5YZPUtZNvgr69fbcxMTEGFFWoR07dkxjx47NEWIWRGxsbIHbtmzZssBtnZycFBgYaLmS9dixYznaHDhwINt6XvO45uXW8NhWP3sAAICCIHQFAACAVVWqVMnWJVhER0dnW781xCuKq1evFmv/otixY4d69+5tuaK0sJKTkwvctnr16oU69q3tr169KrPZnG36gNt//rdfkVsYtvjZAwAAFBRzugIAAMCqXF1dbV2ChdF3vC9uaFtY8fHxGjRoULbANSAgQP/85z+1efNm/fnnn4qPj1dqaqrMZrPl39SpU4vU340bVxWlfWZmphITE7NtN/LnbzabDTsWAACA0bjSFQAAAA7D09Mz2/r8+fP13HPP2aiawps/f74uXbpkWZ80aZLeeeedO96MqqhXxV6/fr3I7Z2cnHL8vG9fT0pKUrly5YpUGwAAQGnGla4AAAAoVW4NEAtzNWNBgkVfX99s67d/3b20W7t2rWW5cePGmjNnzh0DV0mKjIwsUn+XL18uVPtb+/H29s5Rm73//AEAAAqK0BUAAAClyq1fUb/96+n5uXDhwh3bNG3aNFsQuH///sIVZ2MnTpywLPfs2VPOzs4F2m/fvn1F6u/QoUMFbpuZmamQkBDLerNmzXK0uf0xe/v5AwAAFBShKwAAAEqVypUrW5bPnTtXoH3MZrO2b99+x3a+vr5q2bKlZX3Tpk26du1a4Yu0kVvnRL3155SfkJAQ/fHHH0Xq79ixY/rzzz8L1Hbz5s3Zrjbu2LFjjjbdu3fPtr569eoi1QUAAFDaEboCAACgVLn1asioqCgdP378jvusXbtWYWFhBTr+0KFDLcvXrl3TO++8U/gibaRChQqW5dDQ0ALtM2PGjCL3Zzab9cEHHxSo7fvvv59t/bHHHsvRpkWLFgoICLCsf/XVV9mu3gUAACgrCF0BAABQqnTu3Dnb+nvvvZdv+6ioKI0fP77Axx87dqyqVq1qWZ85c6a+//77QtV49erVIn9lvzhuDSzXrl17x7laP/30Uy1fvrxYfc6bN087d+7Mt80333yTbb7ZwMBA3XvvvTnamUwmTZkyxbKelpamAQMGFHrO2cOHDysqKqpQ+wAAAJQkQlcAAACUKvfff7/q169vWf/kk0/073//O9ebav3222/q3LmzwsLC5ObmVqDje3l56ZNPPrHM7ZqRkaGBAwdq8uTJ+d44ymw267ffftMLL7ygunXraunSpYV7YgYYMGCAZTk+Pl6PPPJIrlf4Jicna+rUqRozZoyk7PPkFoa7u7vS0tLUp0+fXINps9msBQsWaOTIkdkezy8oHzx4sAYOHGhZP378uNq0aaOvv/5aGRkZee4XHx+vZcuWqXfv3mrZsqUiIiIK/4QAAABKiIutCwAAAABuZTKZNGPGDA0fPlxSVrD3wgsvaMGCBerRo4cqVaqkmJgY7dy5UwcOHJAkNW/eXL169dLcuXML1Ee/fv00Z84cvfzyyzKbzTKbzZo7d67mzZunDh06qGXLlvLx8VFaWpri4uJ04sQJHTx4ULGxsVZ73gUxZswYzZ07V+Hh4ZKybpB11113qXfv3pZpGUJDQ7Vu3TpLrU2bNtUjjzyit99+u9D9jR07Vj/88IPOnDmjxx57TAEBAerSpYuqVKmiyMhIrV+/Psc0B5MmTVK3bt3yPKbJZNIXX3yhiIgI7dq1S1LWTdCGDh2qiRMnWkL3ChUqKCEhQVFRUTp8+LCOHj2qtLS0Qj8HAAAAWyB0BQAAQKkzbNgw7dy5Ux9++KHlsWPHjunYsWM52jZr1kxr167V4sWLC9XH5MmT1bhxY/3tb3+z3KAqNTVV27dvL9BNudzd3QvVnxG8vLy0evVq9ezZ0xKqpqSkaM2aNVqzZk2O9v7+/lq3bp0WLVpUpP4qVqyoVatW6eGHH1ZERISOHj2qo0eP5tn+2WefLdAcuV5eXtqyZYslTL8hOjpaq1atuuP+JpOpwFc2AwAA2ALTCwAAAKBUmjdvnhYuXCg/P79ct1esWFETJ07U3r17s01HUBj9+vVTaGiopk+fXqBj1KtXT08//bQ2btyo2bNnF6nP4mrbtq327dunvn37WqZIuJ2fn59effVV7d27V/Xq1StWfy1atNDBgwc1dOjQPIPmu+66SytXrtTHH3+cZ023c3d318cff6yDBw/qiSeeUPny5fNt7+zsrI4dO2r69On6888/s91wDQAAoLQxmXObHAsAAAAoJTIyMrR7926FhIToypUrqlSpkurVq6cuXbrI09PT0L5CQ0O1b98+RUVFKTY2Vi4uLvL29lb9+vV19913q27duob2V1wRERHatm2bwsPDlZmZKT8/PzVo0ECdO3eWs7Oz4f3FxcXp119/VXh4uK5du6Zq1aqpdevWat26dbGPnZ6ern379unkyZOKiYnR9evX5eXlJR8fHzVp0kQBAQGqUKGCAc8CAADA+ghdAQAAAAAAAMBATC8AAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAYidAUAAAAAAAAAAxG6AgAAAAAAAICBCF0BAAAAAAAAwECErgAAAAAAAABgIEJXAAAAAAAAADAQoSsAAAAAAAAAGIjQFQAAAAAAAAAMROgKAAAAAAAAAAb6f8q0UvqG6rZMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 686, "width": 686 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.98 0.98 0.98 499\n", " 1 0.97 0.93 0.95 525\n", " 2 0.75 0.99 0.85 377\n", " 3 0.77 0.82 0.80 471\n", " 4 0.81 0.88 0.84 462\n", " 5 0.97 0.92 0.95 527\n", " 6 0.97 0.89 0.93 544\n", " 7 0.93 0.82 0.87 567\n", " 8 0.98 0.88 0.93 556\n", " 9 0.90 0.95 0.93 473\n", "\n", " accuracy 0.90 5001\n", " macro avg 0.90 0.91 0.90 5001\n", "weighted avg 0.91 0.90 0.90 5001\n", "\n" ] } ], "source": [ "print(y_pre)\n", "## 评价预测效果,计算混淆矩阵\n", "confm = metrics.confusion_matrix(np.argmax(y_pre,axis=1),np.argmax(y_val,axis=1))\n", "## 混淆矩阵可视化\n", "plt.figure(figsize=(8,8))\n", "sns.heatmap(confm.T, square=True, annot=True,\n", " fmt='d', cbar=False,linewidths=.8,\n", " cmap=\"YlGnBu\")\n", "plt.xlabel('True label',size = 14)\n", "plt.ylabel('Predicted label',size = 14)\n", "plt.xticks(np.arange(10)+0.5,categories,size = 12)\n", "plt.yticks(np.arange(10)+0.3,categories,\n", "size = 12)\n", "plt.show()\n", "\n", "\n", "print(metrics.classification_report(np.argmax(y_pre,axis=1),np.argmax(y_val,axis=1)))" ] }, { "cell_type": "code", "execution_count": 80, "id": "894a6777", "metadata": {}, "outputs": [], "source": [ "test=\"我国用于载人登月的新一代载人火箭将于2030年前完成研制。“2030年前”这个时间让人心潮澎湃,更心怀期待。为能将中国人的脚印留在月球,无数航天人一步一个脚印,扎扎实实地推进着技术攻关。“仰望星空,脚踏实地”,这八个字特别适合中国航天。我们的目标是\"" ] }, { "cell_type": "code", "execution_count": 81, "id": "69034bfd", "metadata": {}, "outputs": [], "source": [ "data_id=[]\n", "data_id.append([word_to_id[x] for x in test if x in word_to_id])\n", "# 使用keras提供的pad_sequences来将文本pad为固定长度\n", "x_pad = kr.preprocessing.sequence.pad_sequences(data_id, 600)" ] }, { "cell_type": "code", "execution_count": 82, "id": "28b8ef0d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 360ms/step\n" ] } ], "source": [ "y_pre = model1.predict(x_pad)" ] }, { "cell_type": "code", "execution_count": 83, "id": "b736a6fe", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('时尚', 0.27345821261405945), ('时政', 0.2260284572839737), ('科技', 0.18820235133171082), ('游戏', 0.14409953355789185), ('家居', 0.06169718876481056), ('教育', 0.048951540142297745), ('娱乐', 0.037477027624845505), ('体育', 0.01368797942996025), ('财经', 0.005309356842190027), ('房产', 0.0010883485665544868)]\n" ] } ], "source": [ "y_pres=y_pre.tolist()\n", "\n", "keys=list(cat_to_id.keys())\n", "\n", "for pre in y_pres:\n", " result={}\n", " for i in range(10):\n", " result[keys[i]]=pre[i]\n", " result = sorted(result.items(), key=lambda x: x[1], reverse=True)\n", " print(result)" ] }, { "cell_type": "code", "execution_count": null, "id": "42c4ac61", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:.conda-TensorGPU]", "language": "python", "name": "conda-env-.conda-TensorGPU-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" } }, "nbformat": 4, "nbformat_minor": 5 }