123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- """This is code for median pooling from https://gist.github.com/rwightman.
- https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
- """
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn.modules.utils import _pair, _quadruple
- class MedianPool2d(nn.Module):
- """Median pool (usable as median filter when stride=1) module.
- Args:
- kernel_size: size of pooling kernel, int or 2-tuple
- stride: pool stride, int or 2-tuple
- padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
- same: override padding and enforce same padding, boolean
- """
- def __init__(self, kernel_size=3, stride=1, padding=0, same=True):
- """Initialize with kernel_size, stride, padding."""
- super().__init__()
- self.k = _pair(kernel_size)
- self.stride = _pair(stride)
- self.padding = _quadruple(padding) # convert to l, r, t, b
- self.same = same
- def _padding(self, x):
- if self.same:
- ih, iw = x.size()[2:]
- if ih % self.stride[0] == 0:
- ph = max(self.k[0] - self.stride[0], 0)
- else:
- ph = max(self.k[0] - (ih % self.stride[0]), 0)
- if iw % self.stride[1] == 0:
- pw = max(self.k[1] - self.stride[1], 0)
- else:
- pw = max(self.k[1] - (iw % self.stride[1]), 0)
- pl = pw // 2
- pr = pw - pl
- pt = ph // 2
- pb = ph - pt
- padding = (pl, pr, pt, pb)
- else:
- padding = self.padding
- return padding
- def forward(self, x):
- # using existing pytorch functions and tensor ops so that we get autograd,
- # would likely be more efficient to implement from scratch at C/Cuda level
- x = F.pad(x, self._padding(x), mode='reflect')
- x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1])
- x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
- return x
|