123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
- from dataclasses import dataclass
- from typing import Optional
- import torch
- import torch.nn.functional as F
- from torch import nn
- from diffusers.configuration_utils import ConfigMixin, register_to_config
- from diffusers.modeling_utils import ModelMixin
- from diffusers.utils import BaseOutput
- from diffusers.utils.import_utils import is_xformers_available
- from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
- from einops import rearrange, repeat
- import pdb
- @dataclass
- class Transformer3DModelOutput(BaseOutput):
- sample: torch.FloatTensor
- if is_xformers_available():
- import xformers
- import xformers.ops
- else:
- xformers = None
- class Transformer3DModel(ModelMixin, ConfigMixin):
- @register_to_config
- def __init__(
- self,
- num_attention_heads: int = 16,
- attention_head_dim: int = 88,
- in_channels: Optional[int] = None,
- num_layers: int = 1,
- dropout: float = 0.0,
- norm_num_groups: int = 32,
- cross_attention_dim: Optional[int] = None,
- attention_bias: bool = False,
- activation_fn: str = "geglu",
- num_embeds_ada_norm: Optional[int] = None,
- use_linear_projection: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- unet_use_cross_frame_attention=None,
- unet_use_temporal_attention=None,
- ):
- super().__init__()
- self.use_linear_projection = use_linear_projection
- self.num_attention_heads = num_attention_heads
- self.attention_head_dim = attention_head_dim
- inner_dim = num_attention_heads * attention_head_dim
- # Define input layers
- self.in_channels = in_channels
- self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
- if use_linear_projection:
- self.proj_in = nn.Linear(in_channels, inner_dim)
- else:
- self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
- # Define transformers blocks
- self.transformer_blocks = nn.ModuleList(
- [
- BasicTransformerBlock(
- inner_dim,
- num_attention_heads,
- attention_head_dim,
- dropout=dropout,
- cross_attention_dim=cross_attention_dim,
- activation_fn=activation_fn,
- num_embeds_ada_norm=num_embeds_ada_norm,
- attention_bias=attention_bias,
- only_cross_attention=only_cross_attention,
- upcast_attention=upcast_attention,
- unet_use_cross_frame_attention=unet_use_cross_frame_attention,
- unet_use_temporal_attention=unet_use_temporal_attention,
- )
- for d in range(num_layers)
- ]
- )
- # 4. Define output layers
- if use_linear_projection:
- self.proj_out = nn.Linear(in_channels, inner_dim)
- else:
- self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
- # Input
- assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
- video_length = hidden_states.shape[2]
- hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
- encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
- batch, channel, height, weight = hidden_states.shape
- residual = hidden_states
- hidden_states = self.norm(hidden_states)
- if not self.use_linear_projection:
- hidden_states = self.proj_in(hidden_states)
- inner_dim = hidden_states.shape[1]
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
- else:
- inner_dim = hidden_states.shape[1]
- hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
- hidden_states = self.proj_in(hidden_states)
- # Blocks
- for block in self.transformer_blocks:
- hidden_states = block(
- hidden_states,
- encoder_hidden_states=encoder_hidden_states,
- timestep=timestep,
- video_length=video_length
- )
- # Output
- if not self.use_linear_projection:
- hidden_states = (
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
- )
- hidden_states = self.proj_out(hidden_states)
- else:
- hidden_states = self.proj_out(hidden_states)
- hidden_states = (
- hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
- )
- output = hidden_states + residual
- output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
- if not return_dict:
- return (output,)
- return Transformer3DModelOutput(sample=output)
- class BasicTransformerBlock(nn.Module):
- def __init__(
- self,
- dim: int,
- num_attention_heads: int,
- attention_head_dim: int,
- dropout=0.0,
- cross_attention_dim: Optional[int] = None,
- activation_fn: str = "geglu",
- num_embeds_ada_norm: Optional[int] = None,
- attention_bias: bool = False,
- only_cross_attention: bool = False,
- upcast_attention: bool = False,
- unet_use_cross_frame_attention = None,
- unet_use_temporal_attention = None,
- ):
- super().__init__()
- self.only_cross_attention = only_cross_attention
- self.use_ada_layer_norm = num_embeds_ada_norm is not None
- self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
- self.unet_use_temporal_attention = unet_use_temporal_attention
- # SC-Attn
- assert unet_use_cross_frame_attention is not None
- if unet_use_cross_frame_attention:
- self.attn1 = SparseCausalAttention2D(
- query_dim=dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
- upcast_attention=upcast_attention,
- )
- else:
- self.attn1 = CrossAttention(
- query_dim=dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- upcast_attention=upcast_attention,
- )
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
- # Cross-Attn
- if cross_attention_dim is not None:
- self.attn2 = CrossAttention(
- query_dim=dim,
- cross_attention_dim=cross_attention_dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- upcast_attention=upcast_attention,
- )
- else:
- self.attn2 = None
- if cross_attention_dim is not None:
- self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
- else:
- self.norm2 = None
- # Feed-forward
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
- self.norm3 = nn.LayerNorm(dim)
- # Temp-Attn
- assert unet_use_temporal_attention is not None
- if unet_use_temporal_attention:
- self.attn_temp = CrossAttention(
- query_dim=dim,
- heads=num_attention_heads,
- dim_head=attention_head_dim,
- dropout=dropout,
- bias=attention_bias,
- upcast_attention=upcast_attention,
- )
- nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
- self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
- def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
- if not is_xformers_available():
- print("Here is how to install it")
- raise ModuleNotFoundError(
- "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
- " xformers",
- name="xformers",
- )
- elif not torch.cuda.is_available():
- raise ValueError(
- "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
- " available for GPU "
- )
- else:
- try:
- # Make sure we can run the memory efficient attention
- _ = xformers.ops.memory_efficient_attention(
- torch.randn((1, 2, 40), device="cuda"),
- torch.randn((1, 2, 40), device="cuda"),
- torch.randn((1, 2, 40), device="cuda"),
- )
- except Exception as e:
- raise e
- self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
- if self.attn2 is not None:
- self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
- # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
- def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
- # SparseCausal-Attention
- norm_hidden_states = (
- self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
- )
- # if self.only_cross_attention:
- # hidden_states = (
- # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
- # )
- # else:
- # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
- # pdb.set_trace()
- if self.unet_use_cross_frame_attention:
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
- else:
- hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
- if self.attn2 is not None:
- # Cross-Attention
- norm_hidden_states = (
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
- )
- hidden_states = (
- self.attn2(
- norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
- )
- + hidden_states
- )
- # Feed-forward
- hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
- # Temporal-Attention
- if self.unet_use_temporal_attention:
- d = hidden_states.shape[1]
- hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
- norm_hidden_states = (
- self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
- )
- hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
- hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
- return hidden_states
|