123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange
- class InflatedConv3d(nn.Conv2d):
- def forward(self, x):
- video_length = x.shape[2]
- x = rearrange(x, "b c f h w -> (b f) c h w")
- x = super().forward(x)
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
- return x
- class InflatedGroupNorm(nn.GroupNorm):
- def forward(self, x):
- video_length = x.shape[2]
- x = rearrange(x, "b c f h w -> (b f) c h w")
- x = super().forward(x)
- x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
- return x
- class Upsample3D(nn.Module):
- def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.use_conv_transpose = use_conv_transpose
- self.name = name
- conv = None
- if use_conv_transpose:
- raise NotImplementedError
- elif use_conv:
- self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
- def forward(self, hidden_states, output_size=None):
- assert hidden_states.shape[1] == self.channels
- if self.use_conv_transpose:
- raise NotImplementedError
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
- dtype = hidden_states.dtype
- if dtype == torch.bfloat16:
- hidden_states = hidden_states.to(torch.float32)
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
- if hidden_states.shape[0] >= 64:
- hidden_states = hidden_states.contiguous()
- # if `output_size` is passed we force the interpolation output
- # size and do not make use of `scale_factor=2`
- if output_size is None:
- hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
- else:
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
- # If the input is bfloat16, we cast back to bfloat16
- if dtype == torch.bfloat16:
- hidden_states = hidden_states.to(dtype)
- # if self.use_conv:
- # if self.name == "conv":
- # hidden_states = self.conv(hidden_states)
- # else:
- # hidden_states = self.Conv2d_0(hidden_states)
- hidden_states = self.conv(hidden_states)
- return hidden_states
- class Downsample3D(nn.Module):
- def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.padding = padding
- stride = 2
- self.name = name
- if use_conv:
- self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
- else:
- raise NotImplementedError
- def forward(self, hidden_states):
- assert hidden_states.shape[1] == self.channels
- if self.use_conv and self.padding == 0:
- raise NotImplementedError
- assert hidden_states.shape[1] == self.channels
- hidden_states = self.conv(hidden_states)
- return hidden_states
- class ResnetBlock3D(nn.Module):
- def __init__(
- self,
- *,
- in_channels,
- out_channels=None,
- conv_shortcut=False,
- dropout=0.0,
- temb_channels=512,
- groups=32,
- groups_out=None,
- pre_norm=True,
- eps=1e-6,
- non_linearity="swish",
- time_embedding_norm="default",
- output_scale_factor=1.0,
- use_in_shortcut=None,
- use_inflated_groupnorm=None,
- ):
- super().__init__()
- self.pre_norm = pre_norm
- self.pre_norm = True
- self.in_channels = in_channels
- out_channels = in_channels if out_channels is None else out_channels
- self.out_channels = out_channels
- self.use_conv_shortcut = conv_shortcut
- self.time_embedding_norm = time_embedding_norm
- self.output_scale_factor = output_scale_factor
- if groups_out is None:
- groups_out = groups
- assert use_inflated_groupnorm != None
- if use_inflated_groupnorm:
- self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
- else:
- self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
- self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
- if temb_channels is not None:
- if self.time_embedding_norm == "default":
- time_emb_proj_out_channels = out_channels
- elif self.time_embedding_norm == "scale_shift":
- time_emb_proj_out_channels = out_channels * 2
- else:
- raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
- self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
- else:
- self.time_emb_proj = None
- if use_inflated_groupnorm:
- self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
- else:
- self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
- self.dropout = torch.nn.Dropout(dropout)
- self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- if non_linearity == "swish":
- self.nonlinearity = lambda x: F.silu(x)
- elif non_linearity == "mish":
- self.nonlinearity = Mish()
- elif non_linearity == "silu":
- self.nonlinearity = nn.SiLU()
- self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
- self.conv_shortcut = None
- if self.use_in_shortcut:
- self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
- def forward(self, input_tensor, temb):
- hidden_states = input_tensor
- hidden_states = self.norm1(hidden_states)
- hidden_states = self.nonlinearity(hidden_states)
- hidden_states = self.conv1(hidden_states)
- if temb is not None:
- temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
- if temb is not None and self.time_embedding_norm == "default":
- hidden_states = hidden_states + temb
- hidden_states = self.norm2(hidden_states)
- if temb is not None and self.time_embedding_norm == "scale_shift":
- scale, shift = torch.chunk(temb, 2, dim=1)
- hidden_states = hidden_states * (1 + scale) + shift
- hidden_states = self.nonlinearity(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.conv2(hidden_states)
- if self.conv_shortcut is not None:
- input_tensor = self.conv_shortcut(input_tensor)
- output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
- return output_tensor
- class Mish(torch.nn.Module):
- def forward(self, hidden_states):
- return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|