为FedSSL添加KDE并测试

Zhuang Weiming 20189eced1 [Feature] Federated Unsupervised Person Re-identification (#14) před 1 rokem
applications 20189eced1 [Feature] Federated Unsupervised Person Re-identification (#14) před 1 rokem
docker f919f838c2 [Release] v0.1.0 před 2 roky
docs e3b7369727 [Doc]: add README for documentation před 2 roky
easyfl 90acf8fb09 [Feature]: Federated self-supervised learning (#5) před 2 roky
examples f919f838c2 [Release] v0.1.0 před 2 roky
kubernetes f919f838c2 [Release] v0.1.0 před 2 roky
protos f919f838c2 [Release] v0.1.0 před 2 roky
requirements ce4bffeb81 [Fix] Remove dependency on tqdm version před 2 roky
.dockerignore f919f838c2 [Release] v0.1.0 před 2 roky
.gitignore 20189eced1 [Feature] Federated Unsupervised Person Re-identification (#14) před 1 rokem
.readthedocs.yaml f919f838c2 [Release] v0.1.0 před 2 roky
LICENSE f919f838c2 [Release] v0.1.0 před 2 roky
Makefile f919f838c2 [Release] v0.1.0 před 2 roky
README.md b68821c407 [Doc]: Add the number of downloads před 2 roky
requirements.txt f919f838c2 [Release] v0.1.0 před 2 roky
setup.cfg f919f838c2 [Release] v0.1.0 před 2 roky
setup.py f919f838c2 [Release] v0.1.0 před 2 roky

README.md

EasyFL: A Low-code Federated Learning Platform

[![PyPI](https://img.shields.io/pypi/v/easyfl)](https://pypi.org/project/easyfl) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://easyfl.readthedocs.io/en/latest/) [![license](https://img.shields.io/github/license/easyfl-ai/easyfl.svg)](https://github.com/easyfl-ai/easyfl/blob/master/LICENSE) [![maintained](https://img.shields.io/badge/Maintained%3F-YES-yellow.svg)](https://github.com/easyfl-ai/easyfl/graphs/commit-activity) [![Downloads](https://pepy.tech/badge/easyfl)](https://pepy.tech/project/easyfl) [📘 Documentation](https://easyfl.readthedocs.io/en/latest/) | [🛠️ Installation](https://easyfl.readthedocs.io/en/latest/get_started.html)

Introduction

EasyFL is an easy-to-use federated learning (FL) platform based on PyTorch. It aims to enable users with various levels of expertise to experiment and prototype FL applications with little/no coding.

You can use it for:

  • FL Research on algorithm and system
  • Proof-of-concept (POC) of new FL applications
  • Prototype of industrial applications
  • Learning FL implementations

We currently focus on horizontal FL, supporting both cross-silo and cross-device FL. You can learn more about federated learning from these resources.

Major Features

Easy to Start

EasyFL is easy to install and easy to learn. It does not have complex dependency requirements. You can run EasyFL on your personal computer with only three lines of code (Quick Start).

Out-of-the-box Functionalities

EasyFL provides many out-of-the-box functionalities, including datasets, models, and FL algorithms. With simple configurations, you simulate different FL scenarios using the popular datasets. We support both statistical heterogeneity simulation and system heterogeneity simulation.

Flexible, Customizable, and Reproducible

EasyFL is flexible to be customized according to your needs. You can easily migrate existing CV or NLP applications into the federated manner by writing the PyTorch codes that you are most familiar with.

Multiple Training Modes

EasyFL supports standalone training, distributed training, and remote training. By developing the code once, you can easily speed up FL training with distributed training on multiple GPUs. Besides, you can even deploy it to Kubernetes with Docker using remote training.

Getting Started

You can refer to Get Started for installation and Quick Run for the simplest way of using EasyFL.

For more advanced usage, we provide a list of tutorials on:

Projects & Papers

We have released the source code for the following papers under the applications folder:

The following publications are developed using EasyFL:

  • Divergence-aware Federated Self-Supervised Learning, ICLR'2022. [paper]
  • Collaborative Unsupervised Visual Representation Learning From Decentralized Data, ICCV'2021. [paper]
  • Joint Optimization in Edge-Cloud Continuum for Federated Unsupervised Person Re-identification, ACMMM'2021. [paper]

:bulb: We will release the source codes of these projects in this repository. Please stay tuned.

We have been doing research on federated learning for several years, the following are our additional publications.

  • EasyFL: A Low-code Federated Learning Platform For Dummies, IEEE Internet-of-Things Journal. [paper]
  • Performance Optimization for Federated Person Re-identification via Benchmark Analysis, ACMMM'2020. [paper]
  • Federated Unsupervised Domain Adaptation for Face Recognition, ICME'22. [paper]

Join Our Community

Please join our community on Slack: easyfl.slack.com

We will post updated features and answer questions on Slack.

License

This project is released under the Apache 2.0 license.

Citation

If you use this platform or related projects in your research, please cite this project.

@article{zhuang2022easyfl,
  title={Easyfl: A low-code federated learning platform for dummies},
  author={Zhuang, Weiming and Gan, Xin and Wen, Yonggang and Zhang, Shuai},
  journal={IEEE Internet of Things Journal},
  year={2022},
  publisher={IEEE}
}