123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- import argparse
- from collections import defaultdict
- import numpy as np
- import torch
- import torch.nn as nn
- from easyfl.datasets.data import CIFAR100
- from eval_dataset import get_data_loaders
- from model import get_encoder_network
- def inference(loader, model, device):
- feature_vector = []
- labels_vector = []
- model.eval()
- for step, (x, y) in enumerate(loader):
- x = x.to(device)
- # get encoding
- with torch.no_grad():
- h = model(x)
- h = h.squeeze()
- h = h.detach()
- feature_vector.extend(h.cpu().detach().numpy())
- labels_vector.extend(y.numpy())
- if step % 5 == 0:
- print(f"Step [{step}/{len(loader)}]\t Computing features...")
- feature_vector = np.array(feature_vector)
- labels_vector = np.array(labels_vector)
- print("Features shape {}".format(feature_vector.shape))
- return feature_vector, labels_vector
- def get_features(model, train_loader, test_loader, device):
- train_X, train_y = inference(train_loader, model, device)
- test_X, test_y = inference(test_loader, model, device)
- return train_X, train_y, test_X, test_y
- def create_data_loaders_from_arrays(X_train, y_train, X_test, y_test, batch_size):
- train = torch.utils.data.TensorDataset(
- torch.from_numpy(X_train), torch.from_numpy(y_train)
- )
- train_loader = torch.utils.data.DataLoader(
- train, batch_size=batch_size, shuffle=False
- )
- test = torch.utils.data.TensorDataset(
- torch.from_numpy(X_test), torch.from_numpy(y_test)
- )
- test_loader = torch.utils.data.DataLoader(
- test, batch_size=batch_size, shuffle=False
- )
- return train_loader, test_loader
- def test_result(test_loader, logreg, device, model_path):
- # Test fine-tuned model
- print("### Calculating final testing performance ###")
- logreg.eval()
- metrics = defaultdict(list)
- for step, (h, y) in enumerate(test_loader):
- h = h.to(device)
- y = y.to(device)
- outputs = logreg(h)
- # calculate accuracy and save metrics
- accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
- metrics["Accuracy/test"].append(accuracy)
- print(f"Final test performance: " + model_path)
- for k, v in metrics.items():
- print(f"{k}: {np.array(v).mean():.4f}")
- return np.array(metrics["Accuracy/test"]).mean()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--dataset", default="cifar10", type=str)
- parser.add_argument("--model_path", required=True, type=str, help="Path to pre-trained model (e.g. model-10.pt)")
- parser.add_argument('--model', default='simsiam', type=str, help='name of the network')
- parser.add_argument("--image_size", default=32, type=int, help="Image size")
- parser.add_argument("--learning_rate", default=3e-3, type=float, help="Initial learning rate.")
- parser.add_argument("--batch_size", default=512, type=int, help="Batch size for training.")
- parser.add_argument("--num_epochs", default=200, type=int, help="Number of epochs to train for.")
- parser.add_argument("--encoder_network", default="resnet18", type=str, help="Encoder network architecture.")
- parser.add_argument("--num_workers", default=8, type=int, help="Number of data workers (caution with nodes!)")
- parser.add_argument("--fc", default="identity", help="options: identity, remove")
- args = parser.parse_args()
- print(args)
- device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
- # get data loaders
- train_loader, test_loader = get_data_loaders(args.dataset, args.image_size, args.batch_size, args.num_workers)
- # get model
- resnet = get_encoder_network(args.model, args.encoder_network)
- resnet.load_state_dict(torch.load(args.model_path, map_location=device))
- resnet = resnet.to(device)
- num_features = list(resnet.children())[-1].in_features
- if args.fc == "remove":
- resnet = nn.Sequential(*list(resnet.children())[:-1]) # throw away fc layer
- else:
- resnet.fc = nn.Identity()
- n_classes = 10
- if args.dataset == CIFAR100:
- n_classes = 100
- # fine-tune model
- logreg = nn.Sequential(nn.Linear(num_features, n_classes))
- logreg = logreg.to(device)
- # loss / optimizer
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(params=logreg.parameters(), lr=args.learning_rate)
- # compute features (only needs to be done once, since it does not backprop during fine-tuning)
- print("Creating features from pre-trained model")
- (train_X, train_y, test_X, test_y) = get_features(
- resnet, train_loader, test_loader, device
- )
- train_loader, test_loader = create_data_loaders_from_arrays(
- train_X, train_y, test_X, test_y, 2048
- )
- # Train fine-tuned model
- logreg.train()
- for epoch in range(args.num_epochs):
- metrics = defaultdict(list)
- for step, (h, y) in enumerate(train_loader):
- h = h.to(device)
- y = y.to(device)
- outputs = logreg(h)
- loss = criterion(outputs, y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- # calculate accuracy and save metrics
- accuracy = (outputs.argmax(1) == y).sum().item() / y.size(0)
- metrics["Loss/train"].append(loss.item())
- metrics["Accuracy/train"].append(accuracy)
- print(f"Epoch [{epoch}/{args.num_epochs}]: " + "\t".join(
- [f"{k}: {np.array(v).mean()}" for k, v in metrics.items()]))
- if epoch % 100 == 0:
- print("======epoch {}======".format(epoch))
- test_result(test_loader, logreg, device, args.model_path)
- test_result(test_loader, logreg, device, args.model_path)
|