123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- import math
- import torch.nn as nn
- import torch.nn.functional as F
- from .ozan_rep_fun import ozan_rep_function, trevor_rep_function, OzanRepFunction, TrevorRepFunction
- from easyfl.models.model import BaseModel
- __all__ = ['resnet18',
- 'resnet18_half',
- 'resnet18_tripple',
- 'resnet34',
- 'resnet50',
- 'resnet101',
- 'resnet152']
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=dilation, groups=groups, bias=False, dilation=dilation)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(BasicBlock, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError('BasicBlock only supports groups=1 and base_width=64')
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- out = self.relu(out)
- return out
- class ResNetEncoder(nn.Module):
- def __init__(self, block, layers, widths=[64, 128, 256, 512], num_classes=1000, zero_init_residual=False,
- groups=1, width_per_group=64, replace_stride_with_dilation=None,
- norm_layer=None):
- super(ResNetEncoder, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError("replace_stride_with_dilation should be None "
- "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, widths[0], layers[0])
- self.layer2 = self._make_layer(block, widths[1], layers[1], stride=2,
- dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, widths[2], layers[2], stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, widths[3], layers[3], stride=2,
- dilate=replace_stride_with_dilation[2])
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0)
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0)
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- return x
- class Decoder(nn.Module):
- def __init__(self, output_channels=32, num_classes=None, base_match=512):
- super(Decoder, self).__init__()
- self.output_channels = output_channels
- self.num_classes = num_classes
- self.relu = nn.ReLU(inplace=True)
- if num_classes is not None:
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- else:
- self.upconv0 = nn.ConvTranspose2d(base_match, 256, 2, 2)
- self.bn_upconv0 = nn.BatchNorm2d(256)
- self.conv_decode0 = nn.Conv2d(256, 256, 3, padding=1)
- self.bn_decode0 = nn.BatchNorm2d(256)
- self.upconv1 = nn.ConvTranspose2d(256, 128, 2, 2)
- self.bn_upconv1 = nn.BatchNorm2d(128)
- self.conv_decode1 = nn.Conv2d(128, 128, 3, padding=1)
- self.bn_decode1 = nn.BatchNorm2d(128)
- self.upconv2 = nn.ConvTranspose2d(128, 64, 2, 2)
- self.bn_upconv2 = nn.BatchNorm2d(64)
- self.conv_decode2 = nn.Conv2d(64, 64, 3, padding=1)
- self.bn_decode2 = nn.BatchNorm2d(64)
- self.upconv3 = nn.ConvTranspose2d(64, 48, 2, 2)
- self.bn_upconv3 = nn.BatchNorm2d(48)
- self.conv_decode3 = nn.Conv2d(48, 48, 3, padding=1)
- self.bn_decode3 = nn.BatchNorm2d(48)
- self.upconv4 = nn.ConvTranspose2d(48, 32, 2, 2)
- self.bn_upconv4 = nn.BatchNorm2d(32)
- self.conv_decode4 = nn.Conv2d(32, output_channels, 3, padding=1)
- def forward(self, representation):
- # batch_size=representation.shape[0]
- if self.num_classes is None:
- # x2 = self.conv_decode_res(representation)
- # x2 = self.bn_conv_decode_res(x2)
- # x2 = interpolate(x2,size=(256,256))
- x = self.upconv0(representation)
- x = self.bn_upconv0(x)
- x = self.relu(x)
- x = self.conv_decode0(x)
- x = self.bn_decode0(x)
- x = self.relu(x)
- x = self.upconv1(x)
- x = self.bn_upconv1(x)
- x = self.relu(x)
- x = self.conv_decode1(x)
- x = self.bn_decode1(x)
- x = self.relu(x)
- x = self.upconv2(x)
- x = self.bn_upconv2(x)
- x = self.relu(x)
- x = self.conv_decode2(x)
- x = self.bn_decode2(x)
- x = self.relu(x)
- x = self.upconv3(x)
- x = self.bn_upconv3(x)
- x = self.relu(x)
- x = self.conv_decode3(x)
- x = self.bn_decode3(x)
- x = self.relu(x)
- x = self.upconv4(x)
- x = self.bn_upconv4(x)
- # x = torch.cat([x,x2],1)
- # print(x.shape,self.static.shape)
- # x = torch.cat([x,x2,input,self.static.expand(batch_size,-1,-1,-1)],1)
- x = self.relu(x)
- x = self.conv_decode4(x)
- # z = x[:,19:22,:,:].clone()
- # y = (z).norm(2,1,True).clamp(min=1e-12)
- # print(y.shape,x[:,21:24,:,:].shape)
- # x[:,19:22,:,:]=z/y
- else:
- x = F.adaptive_avg_pool2d(x, (1, 1))
- x = x.view(x.size(0), -1)
- x = self.fc(x)
- return x
- class ResNet(BaseModel):
- def __init__(self, block, layers, tasks=None, num_classes=None, ozan=False, size=1, **kwargs):
- super(ResNet, self).__init__()
- if size == 1:
- self.encoder = ResNetEncoder(block, layers, **kwargs)
- elif size == 2:
- self.encoder = ResNetEncoder(block, layers, [96, 192, 384, 720], **kwargs)
- elif size == 3:
- self.encoder = ResNetEncoder(block, layers, [112, 224, 448, 880], **kwargs)
- elif size == 0.5:
- self.encoder = ResNetEncoder(block, layers, [48, 96, 192, 360], **kwargs)
- self.tasks = tasks
- self.ozan = ozan
- self.task_to_decoder = {}
- if tasks is not None:
- # self.final_conv = nn.Conv2d(728,512,3,1,1)
- # self.final_conv_bn = nn.BatchNorm2d(512)
- for task in tasks:
- if task == 'segment_semantic':
- output_channels = 18
- if task == 'depth_zbuffer':
- output_channels = 1
- if task == 'normal':
- output_channels = 3
- if task == 'edge_occlusion':
- output_channels = 1
- if task == 'reshading':
- output_channels = 3
- if task == 'keypoints2d':
- output_channels = 1
- if task == 'edge_texture':
- output_channels = 1
- if size == 1:
- decoder = Decoder(output_channels)
- elif size == 2:
- decoder = Decoder(output_channels, base_match=720)
- elif size == 3:
- decoder = Decoder(output_channels, base_match=880)
- elif size == 0.5:
- decoder = Decoder(output_channels, base_match=360)
- self.task_to_decoder[task] = decoder
- else:
- self.task_to_decoder['classification'] = Decoder(output_channels=0, num_classes=1000)
- self.decoders = nn.ModuleList(self.task_to_decoder.values())
- # ------- init weights --------
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- # -----------------------------
- def forward(self, input):
- rep = self.encoder(input)
- if self.tasks is None:
- return self.decoders[0](rep)
- # rep = self.final_conv(rep)
- # rep = self.final_conv_bn(rep)
- outputs = {'rep': rep}
- if self.ozan:
- OzanRepFunction.n = len(self.decoders)
- rep = ozan_rep_function(rep)
- for i, (task, decoder) in enumerate(zip(self.task_to_decoder.keys(), self.decoders)):
- outputs[task] = decoder(rep[i])
- else:
- TrevorRepFunction.n = len(self.decoders)
- rep = trevor_rep_function(rep)
- for i, (task, decoder) in enumerate(zip(self.task_to_decoder.keys(), self.decoders)):
- outputs[task] = decoder(rep)
- return outputs
- def _resnet(arch, block, layers, pretrained, **kwargs):
- model = ResNet(block=block, layers=layers, **kwargs)
- # if pretrained:
- # state_dict = load_state_dict_from_url(model_urls[arch],
- # progress=progress)
- # model.load_state_dict(state_dict)
- return model
- def resnet18(pretrained=False, **kwargs):
- """Constructs a ResNet-18 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained,
- **kwargs)
- def resnet18_tripple(pretrained=False, **kwargs):
- """Constructs a ResNet-18 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, size=3,
- **kwargs)
- def resnet18_half(pretrained=False, **kwargs):
- """Constructs a ResNet-18 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, size=0.5,
- **kwargs)
- def resnet34(pretrained=False, **kwargs):
- """Constructs a ResNet-34 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained,
- **kwargs)
- def resnet50(pretrained=False, **kwargs):
- """Constructs a ResNet-50 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained,
- **kwargs)
- def resnet101(pretrained=False, **kwargs):
- """Constructs a ResNet-101 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained,
- **kwargs)
- def resnet152(pretrained=False, **kwargs):
- """Constructs a ResNet-152 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained,
- **kwargs)
|