123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import HeteroFeatureBinning
- from pipeline.component import HeteroFeatureSelection
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
- guest_validate_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}
- host_validate_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)
- data_transform_0, data_transform_1 = DataTransform(name="data_transform_0"), DataTransform(name='data_transform_1')
- reader_0, reader_1 = Reader(name="reader_0"), Reader(name='reader_1')
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0.get_party_instance(
- role='guest', party_id=guest).component_param(
- with_label=True, output_format="dense")
- data_transform_0.get_party_instance(
- role='host', party_id=host).component_param(
- with_label=False, output_format="dense")
- reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_validate_data)
- reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_validate_data)
- data_transform_1.get_party_instance(
- role='guest', party_id=guest).component_param(
- with_label=True, output_format="dense")
- data_transform_1.get_party_instance(
- role='host', party_id=host).component_param(
- with_label=True, output_format="dense")
- intersection_0 = Intersection(name="intersection_0")
- intersection_1 = Intersection(name="intersection_1")
- param = {
- "method": "quantile",
- "optimal_binning_param": {
- "metric_method": "gini",
- "min_bin_pct": 0.05,
- "max_bin_pct": 0.8,
- "init_bucket_method": "quantile",
- "init_bin_nums": 100,
- "mixture": True
- },
- "compress_thres": 10000,
- "head_size": 10000,
- "error": 0.001,
- "bin_num": 10,
- "bin_indexes": -1,
- "bin_names": None,
- "category_indexes": [0, 1, 2],
- "category_names": None,
- "adjustment_factor": 0.5,
- "local_only": False,
- "transform_param": {
- "transform_cols": -1,
- "transform_names": None,
- "transform_type": "bin_num"
- }
- }
- hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0", **param)
- hetero_feature_binning_1 = HeteroFeatureBinning(name='hetero_feature_binning_1')
- selection_param = {
- "select_col_indexes": -1,
- "select_names": [],
- "filter_methods": ["iv_filter"],
- "iv_param": {
- "metrics": ["iv", "iv", "iv"],
- "filter_type": ["threshold", "top_k", "top_percentile"],
- "threshold": [2, 10, 0.9],
- "mul_class_merge_type": ["max", "min", "average"]
- }}
- hetero_feature_selection_0 = HeteroFeatureSelection(name="hetero_feature_selection_0", **selection_param)
- hetero_feature_selection_1 = HeteroFeatureSelection(name="hetero_feature_selection_1")
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(reader_1)
- pipeline.add_component(
- data_transform_1, data=Data(
- data=reader_1.output.data), model=Model(
- data_transform_0.output.model))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data))
- pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data))
- pipeline.add_component(hetero_feature_binning_1, data=Data(data=intersection_1.output.data),
- model=Model(hetero_feature_binning_0.output.model))
- pipeline.add_component(hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data),
- model=Model(isometric_model=hetero_feature_binning_0.output.model))
- pipeline.add_component(hetero_feature_selection_1, data=Data(data=hetero_feature_binning_1.output.data),
- model=Model(hetero_feature_selection_0.output.model))
- pipeline.compile()
- pipeline.fit()
- # predict
- # deploy required components
- pipeline.deploy_component([data_transform_0, intersection_0, hetero_feature_selection_0])
- predict_pipeline = PipeLine()
- # add data reader onto predict pipeline
- predict_pipeline.add_component(reader_1)
- # add selected components from train pipeline onto predict pipeline
- # specify data source
- predict_pipeline.add_component(
- pipeline, data=Data(
- predict_input={
- pipeline.data_transform_0.input.data: reader_1.output.data}))
- # run predict model
- predict_pipeline.predict()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|