123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- import torch as t
- from torch import nn
- from pipeline import fate_torch_hook
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import HeteroNN
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.component.nn import DatasetParam
- from pipeline.interface import Data
- from pipeline.utils.tools import load_job_config
- fate_torch_hook(t)
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": "experiment"}
- host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": "experiment"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0")
- data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True)
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
- intersection_0 = Intersection(name="intersection_0")
- hetero_nn_0 = HeteroNN(name="hetero_nn_0", epochs=15,
- interactive_layer_lr=0.05, batch_size=256, validation_freqs=1, task_type='classification',
- selector_param={"method": "relative"})
- guest_nn_0 = hetero_nn_0.get_party_instance(role='guest', party_id=guest)
- host_nn_0 = hetero_nn_0.get_party_instance(role='host', party_id=host)
- # define model
- guest_bottom = t.nn.Sequential(
- nn.Linear(9, 9),
- nn.ReLU(),
- )
- guest_top = t.nn.Sequential(
- nn.Linear(4, 4),
- nn.Softmax(dim=1)
- )
- host_bottom = t.nn.Sequential(
- nn.Linear(9, 9),
- nn.ReLU(),
- )
- # use interactive layer after fate_torch_hook
- # add drop out in this layer
- interactive_layer = t.nn.InteractiveLayer(out_dim=4, guest_dim=9, host_dim=9, host_num=1, dropout=0.2)
- guest_nn_0.add_top_model(guest_top)
- guest_nn_0.add_bottom_model(guest_bottom)
- host_nn_0.add_bottom_model(host_bottom)
- optimizer = t.optim.Adam(lr=0.05) # you can initialize optimizer without parameters after fate_torch_hook
- loss = t.nn.CrossEntropyLoss()
- hetero_nn_0.set_interactive_layer(interactive_layer)
- # add dataset param, because CrossEntropy loss need flatten long label, so add this parameter
- # will use table dataset in federatedml/nn/dataset/table.py
- hetero_nn_0.add_dataset(DatasetParam(dataset_name='table', flatten_label=True, label_dtype='long'))
- hetero_nn_0.compile(optimizer=optimizer, loss=loss)
- evaluation_0 = Evaluation(name='eval_0', eval_type='multi')
- # define components IO
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(hetero_nn_0, data=Data(train_data=intersection_0.output.data))
- pipeline.add_component(evaluation_0, data=Data(data=hetero_nn_0.output.data))
- pipeline.compile()
- pipeline.fit()
- print(pipeline.get_component("hetero_nn_0").get_summary())
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|